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OverView

Question:

> Can we build a generalization analysis of trained Deep ResNets in the mean-field setting?

Contributions:

> The first minimum eigenvalue estimation (lower bound) of the Gram matrix of the gradients for deep
ResNet parameterized by the ResNet encoder’s parameters and MLP predictor's parameters in the
mean-field regime.

> The paper proves that the KL divergence of feature encoder v and output layer v can be bounded by a
constant (depending only on network architecture parameters) during the training, which facilitates our
generalization analysis.

> This paper builds the connection between the Rademacher complexity result and KL divergence, and then
derive the convergence rate O(1/+/n) for generalization.
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Problem Settings

Basic Settings:

> The training set Dy, = {(x4,yi)}]—, is drawn from an unknown distribution 2 on X x Y, and pux is the
marginal distribution of u over X.

> We consider a binary classification task, denoted by minimizing the expected risk, let
Lo—1(f,y) == 1{yf < 0}.

> We employ the squared loss in ERM in training, i.e, 4(f,y) := %(y -3

> The hypothesis f is parameterized by the ResNet feature encoder and a non-linear predictor, fr .. The
empirical loss E(T, v) :=Egprp,, Ufrv(x),y(x)).
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Problem Settings

Network Structure: («, 8 will be determined later)

> Discrete
M
o
zi41(z) = z(x) + WL Z o(z(x),0,m) €RY, le[L—1],
m=1
L M
fQK,GL M m) }Z ZL,wk
> The following ODE models the infinite death infinite width ResNet.
d
dz(@s) _ a~/ o(z(z, s),0)dv(8,s), s€[0,1], z(z,0) =x. )
ds Rk

We denote the solution of Equation (2) as Z,(z, s).

> The whole network can be written as

frv(x):=p- / WMZy,(z,1),w)dr(w),
Rk
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Assumptions

Assumption (Assumptions on data)

We assume that for x; # ¢; ~ pux, the following holds with probability 1,

Hw’L”Q =1, |y(wl)| <1, <xi7wj> < Cmax < 1,Vi,j € [n] °

Assumption (Assumption on initialization)

2 2
The initial distribution 1, vo is standard Gaussian: (10, v0)(w, 0, s) o exp (—M) ,Vs € [0,1].

Assumption (Assumptions on activation o, h)

Let 0 := (u,w,b) € R*, where u,w € R*» b ER, i.e. k, =2d+1; w := (a,w,b) € RF7, where
w e R’W,a,b €R, ie kr =d+2. Forany z € R*v | we assume

0(z,0) = uoo(w'z+b), h(z,w)=aoco(w'z+b), oo:R—R.

In addition, we have the following assumption on o¢. |oo(x)| < C1 max(|z|,1),|op(z)| < C1, |0y (z)| < C1,
and let p;(co) be the i-th Hermite coefficient of og.
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Gradient Evolution

> The evolution of the ResNet layers (6, s) can be characterized as

~

OL(7,v)
v

%(0’ S, t) =Vg- <V(0a S, t)ve

07 )t ) t207
= (6,5 ))

> The evolution of the final layer distribution 7(w) can be characterized as

OL(T,v)
T

or
E(w,t) =Vu- (T(w,t)Vw (w,t)) , t>0,

where the functional derivative

o~

OL(T,v)
oT
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(@) = Eanp, [B- (fru(@) — y(@)) - h(Zo(@,1),w)].

®3)
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Gram Matrix

> We define one Gram matrix for the ResNet layers, G1(7,v) by

1
Gl(T7 V) = / Gl(Tv I/,S)dS
0
Gl(Ty v, S) = EGNU(-,S)Jl(Ty v, 0, S)Jl (7—7 v,0, S)T .

> We define the Gram matrix for the MLP parameter distribution 7, G2(7,v) by
Go(1,v) = Eyr () J2(v,w)J2 (v,w) T, where the row vector of Js is defined as

(J2(v, ""))z’, =Vuwh(Z,(z;,1),w), 1<i<n.

> The Gram matrix for the whole network is G = a2G1 + Gs.
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Minimum Eigenvalue

Lemma
There exist a constant A := A(d), only depending on the dimension d, such that Amin[G(70,10)] is lower
bounded by
A0 = Amin(G(70,v0)) = Amin(G2(70,v0)) > A(d) .

Theorem
Assume the PDE Eqn. 4 has solution 7 € P2, and the PDE Eqn. 3 has solution vy € C(P?;[0,1]). Under
Assumption 1, 2, 3, for some constant Ck1, dependent on d, «, taking B = % > %L(d’a), the following
results hold for all ¢t € [0, c0):

PN _B2A ~ Ck1(d, Oc) CKkL (d7 a)

L(Tt,llt) <e 2n fL(Tg,I/o), KL(TtH’To) < TBQ, KL(VtHI/o) < TBQ o

where the radius rmax is defined such that if v € C(P?;[0,1]), 7 € P2, max{Wa(v,v0), Wa(T,70)} < Tmax, we
have Amin(G2(T,v)) > 22.
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Generalization

Theorem (Generalization)

Assume Ty € C(P?;[0,1]) and vy € P? be the ground truth distributions, such that,
y(x) = Bw~r, M(Zy, (z,1),w). Under the Assumption 1, 2 and 3, we set 8 > Q(+/n). For any 6 > 0, with
probability at least 1 — §, the following bound holds:

Ez~px lo-1(fr, v (2),y(2)) $ 1/ Vn + 6 /log(2/5)/2n,

where < hides the constant dependence on d, .
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