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GFlowNets for Optimization

> Generative Flow Networks (GFlowNets, Bengio et al. [2021]) have been introduced as a method to sample
a diverse set of candidates with probabilities proportional to a given reward.

Weakness of GFlowNets

> GFlowNets require an explicit formulation of a scalar reward R(x) that measures the global quality of an
object z. In the multi-objective optimization where D > 1, GFlowNets cannot be directly applied and u(z)
has to be scalarized in prior [Jain et al., 2023; Roy et al., 2023].

> To prioritize the identification of candidates with high scalar u(z) value, GFlowNets typically operate on
the exponentially scaled reward R(x) = (u(z))?. However, the optimal 3 balancing the
exploration-exploitation is generally unknown.

> The exact computation of u(z) might be costly, but the comparison the ordering of u(z) and u(z’) may be
more efficient.
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Problem Statement

Problem Statement
We want to maximize a set of D objectives over X, u(x) € RP. We define the the Pareto dominance on

vectors u, u’ € RP, such that u < v/ & VEk,uy < uj .. We remark that < induces a total order on X for D =1,
and a partial order for D > 1.
> We want to learn an order-preserving reward 1/2\(17) such that ﬁ(m) < ﬁ(x/)  u(z) S u(z').

> We also want R(z) to be almost uniform in the early training stages, and to concentrate on non-dominated
candidates in the later training stages.

Idea

To use relative rather explicit boundary conditions to train GFNs.
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GFlowNet Notations
DAG

> A directed acyclic graph G = (S, .A) with state space S and action space A.

> Let so € S be the initial state, the only state with no incoming edges; and terminal states set X be the
states with no outgoing edges.

> Trajectory: a sequence of transitions 7 = (so—s1— ... —sn) going from the initial state so to a terminal
state s, = =

Markovian Flow

> A trajectory flow is a nonnegative function F': T—R>q.
> For any state s, define the state flow F(s) = Zser F(7), and, for any edge s—s’, the edge flow
F(S*}S/) = ZT:(M—M—)s’—)m ) F(T)

> The forward transition Pr and backward transition probability are defined as
Pp(s'|s) := F(s — s')/F(s), Pg(s|s’) = F(s — s')/F(s’) for the consecutive state s, s’.
> To approximate a Markovian flow F' on the graph G such that

F(xz) = R(z) VxeX. (1)
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Algorithm

v

v

Consider the terminal state set X C X.
The labeling distribution Py, indicator function of the Pareto front of X.

1]z € Pareto(X)]

Py (x| X) = |Pareto(X)|

> The reward R(-) also induces a conditional distribution on the sample set X,

> Minimizing
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R(z) Vo€ X
/ ’ :

ZE’GX R(Cﬂ )

P(z|X,R): =

Lop(X; R) = KL, (-|X)|[B(-|X, R)).
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Example

v

Let us consider Trajectory Balance in the single-objective maximization.

v

In the single-objective maximization, let X = (z,x’), i.e., pairwise comparison.

1(u(z) > u(z)) + 1(u(z) > u(z’))

P(z|X,R) = ——%) ﬁ(xl :
R(z) + R(a')

> For the trajectory balance objective, let the trajectory 7 — x, we define

n
Rrp(30) = Zo H Pr(st|st—1;0)/Pp(st—1lst; 0).
=1

> For the non-trajectory balance objectives, Lop (X; E) can also be easily integrated.
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Theory

Mutually different

For {z;}}' , € X, assume that u(z;) < u(z;),0 < i < j < n. The order-preserving reward ﬁ(a:) € 1/vy,1]is
defined by the reward function that minimizes the order-preserving loss for neighbouring pairs Lop_n, i.e.,

R() = i Lop— shE o
©) arg . win - Lop N({zitieos7)

n

= arg min ]Zﬁop({xifl,a:i};r).

rr(z)E[l/y,1
=1
We have ﬁ(xz) =¥/"=10< i< n, and Lop-N{zi ) o; ﬁ) =nlog(l+1/7v).

General case (informal)
For {z;}?_, € X, assume that u(z;) < u(z;),0 < i < j < n. When v is sufficiently large, there exists o, 8y,

dependent on -, such that ﬁ(a:H.l) = awﬁ(zi) if w(zit1) > u(z;), and ﬁ(zi_;,_l) = ,nyﬁ(mi) if
w(ziy1) = u(x;), for 0 < i < n — 1. Also, minimize the Lop_n qgith a variable v will drive
Y — 00,y —+ 00, By — 1.
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Single Objective Experiments: NAS

> NATS-Bench [Dong et al., 2021]. The NAS can be regarded as a sequence generation problem to generate
x, where the reward of each sequence of operations is determined by the accuracy of the corresponding
architecture.

> Let up(z) is the test accuracy of x's corresponding architecture with the weights at the T-th epoch during
its standard training pipeline. We want to maximize u20o, but using only w12 in training. Since uj2 is
much more computationally efficient.

> We plot the u12 and u200 value of those who have the highest uj2 value observed in training so far. The
x-axis is measured by the time to compute w2 in the training so far.
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Single Objective Experiments: NAS

Test accuracy at Epoch 200

Figure: Multi-trial training of a GFlowNet sampler. Best test accuracy at epoch 12 and 200 of random baseline (Random),
GFlowNet methods (TB, OP-TB, OP-TB-KL, OP-TB-KL-AUG), and other multi-trial algorithms (REA, BOHB, REINFORCE).
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Single Objective Experiments: Molecular Generation

> We study various molecular designs environments [Bengio et al., 2021], including Bag, TFBind8,
TFBind10, QM9, sEH.

> We consider previous GFN methods and reward-maximization methods as baselines. Previous GFN
methods include TB, DB, subTB, maximum entropy (MaxEnt, Malkin et al. [2022]), and
substructure-guided trajectory balance (GTB, Shen et al. [2023]). For reward-maximization methods, we
consider a widely-used sampling-based method in the molecule domain, Markov Molecular Sampling
(MARS), and RL-based methods, including actor-critic, Soft Q-Learning, and proximal policy optimization.
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Single Objective Experiments: Molecular Generation
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Multi Objective Experiments: HyperGrid

> We study two-dimensional HyperGrid, and consider five objectives.
> We compare the learned reward function of OP-GFNs and PC(Preference Conditioning)-GFNs. [Jain et al.,
2023]
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Figure: Reward Landscape: The first row of the above two figures contains all the states (blue) and the true Pareto front
(orange).
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Multi Objective Experiments: HyperGrid
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Multi Objective Experiments: Molecular Generation

> Achieve comparable or better performance with PC-GFNs and GC (Goal Conditioning)-GFNs [Roy et al.,
2023] without scalarization (no preference vectors, no temperature).
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Figure: Fragment-Based Molecule Generation: We plot the estimated Pareto front of the generated samples in [0, 1]2. The z-,
y-axis are the first, second objective in the title of respectively.
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Future Work

> We currently resample from the replay buffer to ensure that the training of OP-GFNs does not collapse to
part of the Pareto front. In the future, we hope that we can introduce more controllable guidance to ensure
the diversity of the OP-GFNs* sampling.

> We want to find a specific task where the ordering is much easier to obtain than the exact reward value.
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