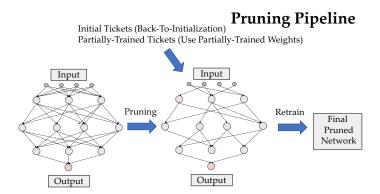
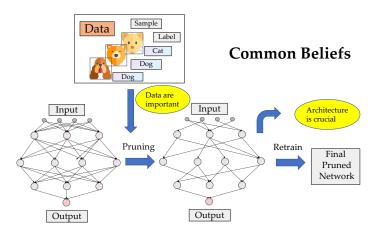
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot

Jingtong Su*1, Yihang Chen*1, Tianle Cai*2, Tianhao Wu1, Ruiqi Gao², Liwei Wang¹ and Jason D. Lee²

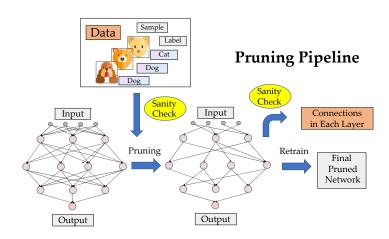

¹Peking University

²Princeton University

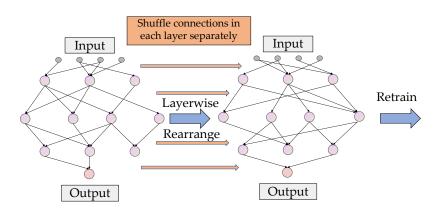
³Zhongguancun Haihua Institute for Frontier Information Technology *Equal Contribution, Reverse Alphabetical Order.


Background Introduction

Network pruning has been proposed as an effective technique to reduce the resource requirements with minimal performance degradation.


Common Beliefs

- The architecture of the subnetwork is crucial.
- The data used for pruning are important.



Sanity Checks

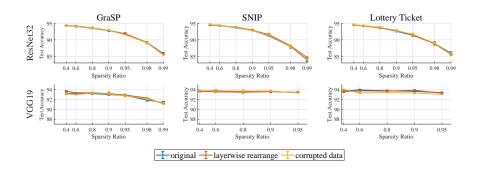

Use sanity-checks to unravel the information encoded by the pruning method. Two check methods: Corrupted data & Layerwise rearrange.

Illustration of Layerwise Rearrange

Results: Sanity Checks on Initial Tickets

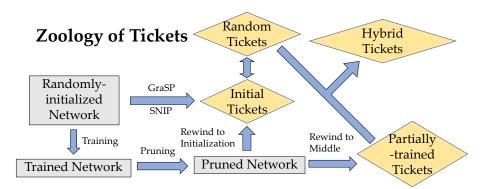
Results: Sanity Checks on Partially-Trained Tickets

Table: Sanity-check on partially-trained tickets on CIFAR-10 dataset.

Network	VGG19			ResNet32		
Pruning ratio	90%	95%	98%	90%	95%	98%
VGG19/ResNet32 (Full Network)	93.70	-	-	94.62	-	-
Lottery Tickets	93.66±0.08	93.39±0.13	10.00±0.00	92.61±0.19	91.37±0.28	88.92±0.49
Shuffle Weights Half Dataset Learning Rate Rewinding	93.54±0.04 93.79±0.14 94.14±0.17	93.33±0.10 93.53±0.13 93.99 ± 0.15	10.00±0.00 10.00±0.00 10.00±0.00	92.38±0.36 93.01±0.18 94.14±0.10	91.29±0.28 92.03±0.21 93.02 ± 0.28	88.52±0.47 89.95±0.08 90.83 ± 0.22

Results: Random Tickets

Table: Test accuracy of pruned VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets. In the full paper, the bold number indicates the average accuracy is within the best confidence interval.


Dataset		CIFAR-10			CIFAR-100	
Pruning ratio	90%	95%	98%	90%	95%	98%
VGG19 (Full Network)	93.70	-	-	72.60	-	-
Lottery Tickets	93.66±0.08	93.39±0.13	10.00±0.00	72.58±0.27	70.47±0.19	1.00±0.00
SNIP	93.65 ± 0.14	93.39 ± 0.08	81.37 ± 18.17	72.83 ± 0.16	71.81 \pm 0.11	10.83 ± 6.74
GraSP	$93.01 {\pm} 0.16$	$92.82{\pm}0.20$	$91.90 {\pm} 0.23$	71.07 ± 0.31	$70.14 {\pm} 0.21$	$68.34{\pm}0.20$
Random Tickets (Ours)	93.77±0.10	93.42±0.22	92.45±0.22	72.55±0.14	71.37±0.09	68.98±0.34
ResNet32 (Full Network)	94.62	-	-	74.57	-	-
Lottery Tickets	92.61±0.19	91.37±0.28	88.92±0.49	69.63±0.26	66.48±0.13	60.22±0.60
SNIP	92.81 ± 0.17	91.20 ± 0.19	87.94 ± 0.40	69.97 ± 0.17	64.81 ± 0.44	47.97 ± 0.82
GraSP	$92.79 {\pm} 0.24$	91.80 ± 0.11	$89.21 {\pm} 0.26$	$70.12 {\pm} 0.15$	$67.05 {\pm} 0.39$	$59.25 {\pm} 0.33$
Random Tickets (Ours)	92.97±0.05	91.60±0.26	89.10±0.33	69.70±0.48	66.82±0.12	60.11±0.16

Results: Hybrid Tickets

Table: Test accuracy of partially-trained tickets and our hybrid tickets of VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets.

Dataset	CIFAR-10			CIFAR-100			
Pruning ratio	90%	95%	98%	90%	95%	98%	
VGG19 (Full Network)	93.70	-	-	72.60	-	-	
OBD Learning Rate Rewinding	93.74 94.14 ± 0.17	93.58 93.99 ± 0.15	93.49 10.00±0.00	73.83 73.73 ± 0.18	71.98 72.39±0.40	67.79 1.00±0.00	
Hybrid Tickets (Ours)	94.00±0.12	93.83±0.10	93.52±0.28	73.53±0.20	73.10±0.11	71.61±0.46	
ResNet32 (Full Network)	94.62	-	-	74.57	-	-	
OBD Learning Rate Rewinding	94.17 94.14 ± 0.10	93.29 93.02 ± 0.28	90.31 90.83 ± 0.22	71.96 72.41 ± 0.49	68.73 67.22±3.42	60.65 59.22±1.15	
Hybrid Tickets (Ours)	93.98±0.15	92.96±0.13	90.85±0.06	71.47±0.26	69.28±0.40	63.44±0.34	

Overview of our Terminology

Thanks For Watching!

Contact

Jingtong Su (jtsu@pku.edu.cn), Yihang Chen (yihang.chen@pku.edu.cn) and Tianhao Wu (1700010607@pku.edu.cn) are applying for Ph.D. this year!

Please contact if you are interested!