Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot Jingtong Su*1, Yihang Chen*1, Tianle Cai*2, Tianhao Wu1, Ruiqi Gao², Liwei Wang¹ and Jason D. Lee² ¹Peking University ²Princeton University ³Zhongguancun Haihua Institute for Frontier Information Technology *Equal Contribution, Reverse Alphabetical Order. ### **Background Introduction** Network pruning has been proposed as an effective technique to reduce the resource requirements with minimal performance degradation. #### Common Beliefs - The architecture of the subnetwork is crucial. - The data used for pruning are important. # Sanity Checks Use sanity-checks to unravel the information encoded by the pruning method. Two check methods: Corrupted data & Layerwise rearrange. ## Illustration of Layerwise Rearrange # Results: Sanity Checks on Initial Tickets ### Results: Sanity Checks on Partially-Trained Tickets Table: Sanity-check on partially-trained tickets on CIFAR-10 dataset. | Network | VGG19 | | | ResNet32 | | | |--|--|--|--|--|--|--| | Pruning ratio | 90% | 95% | 98% | 90% | 95% | 98% | | VGG19/ResNet32 (Full Network) | 93.70 | - | - | 94.62 | - | - | | Lottery Tickets | 93.66±0.08 | 93.39±0.13 | 10.00±0.00 | 92.61±0.19 | 91.37±0.28 | 88.92±0.49 | | Shuffle Weights Half Dataset Learning Rate Rewinding | 93.54±0.04
93.79±0.14
94.14±0.17 | 93.33±0.10
93.53±0.13
93.99 ± 0.15 | 10.00±0.00
10.00±0.00
10.00±0.00 | 92.38±0.36
93.01±0.18
94.14±0.10 | 91.29±0.28
92.03±0.21
93.02 ± 0.28 | 88.52±0.47
89.95±0.08
90.83 ± 0.22 | #### Results: Random Tickets Table: Test accuracy of pruned VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets. In the full paper, the bold number indicates the average accuracy is within the best confidence interval. | Dataset | | CIFAR-10 | | | CIFAR-100 | | |-------------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------| | Pruning ratio | 90% | 95% | 98% | 90% | 95% | 98% | | VGG19 (Full Network) | 93.70 | - | - | 72.60 | - | - | | Lottery Tickets | 93.66±0.08 | 93.39±0.13 | 10.00±0.00 | 72.58±0.27 | 70.47±0.19 | 1.00±0.00 | | SNIP | 93.65 ± 0.14 | 93.39 ± 0.08 | 81.37 ± 18.17 | 72.83 ± 0.16 | 71.81 \pm 0.11 | 10.83 ± 6.74 | | GraSP | $93.01 {\pm} 0.16$ | $92.82{\pm}0.20$ | $91.90 {\pm} 0.23$ | 71.07 ± 0.31 | $70.14 {\pm} 0.21$ | $68.34{\pm}0.20$ | | Random Tickets (Ours) | 93.77±0.10 | 93.42±0.22 | 92.45±0.22 | 72.55±0.14 | 71.37±0.09 | 68.98±0.34 | | ResNet32 (Full Network) | 94.62 | - | - | 74.57 | - | - | | Lottery Tickets | 92.61±0.19 | 91.37±0.28 | 88.92±0.49 | 69.63±0.26 | 66.48±0.13 | 60.22±0.60 | | SNIP | 92.81 ± 0.17 | 91.20 ± 0.19 | 87.94 ± 0.40 | 69.97 ± 0.17 | 64.81 ± 0.44 | 47.97 ± 0.82 | | GraSP | $92.79 {\pm} 0.24$ | 91.80 ± 0.11 | $89.21 {\pm} 0.26$ | $70.12 {\pm} 0.15$ | $67.05 {\pm} 0.39$ | $59.25 {\pm} 0.33$ | | Random Tickets (Ours) | 92.97±0.05 | 91.60±0.26 | 89.10±0.33 | 69.70±0.48 | 66.82±0.12 | 60.11±0.16 | #### Results: Hybrid Tickets Table: Test accuracy of partially-trained tickets and our hybrid tickets of VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets. | Dataset | CIFAR-10 | | | CIFAR-100 | | | | |--------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------|---------------------|--| | Pruning ratio | 90% | 95% | 98% | 90% | 95% | 98% | | | VGG19 (Full Network) | 93.70 | - | - | 72.60 | - | - | | | OBD
Learning Rate Rewinding | 93.74
94.14 ± 0.17 | 93.58
93.99 ± 0.15 | 93.49
10.00±0.00 | 73.83
73.73 ± 0.18 | 71.98
72.39±0.40 | 67.79
1.00±0.00 | | | Hybrid Tickets (Ours) | 94.00±0.12 | 93.83±0.10 | 93.52±0.28 | 73.53±0.20 | 73.10±0.11 | 71.61±0.46 | | | ResNet32 (Full Network) | 94.62 | - | - | 74.57 | - | - | | | OBD
Learning Rate Rewinding | 94.17
94.14 ± 0.10 | 93.29
93.02 ± 0.28 | 90.31
90.83 ± 0.22 | 71.96
72.41 ± 0.49 | 68.73
67.22±3.42 | 60.65
59.22±1.15 | | | Hybrid Tickets (Ours) | 93.98±0.15 | 92.96±0.13 | 90.85±0.06 | 71.47±0.26 | 69.28±0.40 | 63.44±0.34 | | ## Overview of our Terminology #### Thanks For Watching! #### Contact Jingtong Su (jtsu@pku.edu.cn), Yihang Chen (yihang.chen@pku.edu.cn) and Tianhao Wu (1700010607@pku.edu.cn) are applying for Ph.D. this year! Please contact if you are interested!