

lions@epfl

Membership Inference Attacks against Large Vision-Language Models

Zhan Li^{*,1,3}, Yongtao Wu^{*,1}, Yihang Chen^{*,1,2}, Francesco Tonin¹, Elias Abad Rocamora¹, and Volkan Cevher¹ ¹EPFL ²UCLA ³Ant Group ^{*}Equal contribution

TL;DR

Membership Inference Attack (MIA) [1]: a type of attack on ML models that attempts to whether a particular data record is part of the training dataset. Our contributions can be summarized as follows.

- We release the first benchmark tailored for the detection of training data in VLLMs, called Vision Language MIA (VL-MIA). By leveraging Flickr and GPT-4, we construct VL-MIA that contains two images MIA tasks and one text MIA task for various VLLMs, including MiniGPT-4 [2], LLaVA 1.5 [3] and LLaMA-Adapter V2 [4].
- We perform the first individual image or description MIAs on VLLMs in a cross-modal manner. Specifically, we demonstrate that we can perform image MIAs by computing statistics from the image or text slices of the VLLM's output logits.
- We propose a target-free MIA metric, MaxRényi-K%, and its modified target-based ModRényi. We demonstrate their effectiveness on open-source VLLMs and closed-source GPT-4.

MaxRényi MIA

Rényi entropy of order α Given a probability distribution p, the Rényi entropy [5] of order α is defined as $H_{\alpha}(p) = \frac{1}{1-\alpha} \log \left(\sum_{j} (p_{j})^{\alpha} \right), \quad 0 < \alpha < \alpha$ $\infty, \alpha \neq 1$. At $\alpha = 1$ and $\alpha = \infty$, the entropy is defined as:

• $H_1(p) = -\sum_j p_j \log p_j, \ H_{\infty}(p) = -\log \max p_j.$

MaxRényi-K% For a token sequence $X := (x_1, x_2, \ldots, x_L)$, let the next-token probability distribution at the *i*-th token be: $p^{(i)}(\cdot) = \mathbb{P}(\cdot | x_1, \ldots, x_i)$. Define Max-K%(X) as the subset of X containing the top K% tokens with the largest Rényi entropies. The MaxRényi-K% score of X is given by:

$$\mathtt{MaxR\acute{e}nyi-K}(X) = \frac{1}{|\mathrm{Max-K}(X)|} \sum_{i \in \mathrm{Max-K}(X)} H_{\alpha}(p^{(i)})$$

Special cases:

- $\alpha = 1, K = 100$: standard entropy-based MIA.
- $\alpha = \infty$: the most likely next token probability. In comparison, Min-K [6] deals with the target next token probability.

Extension to Target-Based Scenarios: ModRényi We propose ModRényi for scenarios where the target token ID is known. Using a linearized Rényi entropy, $\overline{H}_{\alpha}(p)$, we define: $\overline{H}_{\alpha}(p) = \frac{1}{1-\alpha} \left(\sum_{j} (p_j)^{\alpha} - 1 \right), \quad 0 < \alpha < \infty, \alpha \neq 1.$ Given next token ID y, we define the modified Kényi entropy as:

$$\overline{H}_{\alpha}(p,y) = -\frac{1}{|\alpha-1|} \left((1-p_y) p_y^{|\alpha-1|} - (1-p_y) + \sum_{j \neq y} p_j (1-p_j)^{|\alpha-1|} - p_j \right)$$

MIAs against VLLMs: pipeline & benchmark

Table 1: **Overview of VL-MIA dataset**: VL-MIA covers image and text modalities and can be applied for dominant open-sourced VLLMs.

Dataset	Modality	Member data	Non-member data	Application
VL-MIA/DALL-E	image	LAION_CCS	DALL-E-generated images	LLaVA 1.5 MiniGPT-4 LLaMA_adapter v2
VL-MIA/Flickr	image	MS COCO (from Flickr)	Latest images on Flickr	LLaVA 1.5 MiniGPT-4 LLaMA_adapter v2
VL-MIA/Text	text	LLaVA v1.5 instruction-tuning text	GPT-generated answers	LLaVA 1.5 LLaMA_adapter v2
		MiniGPT-4 instruction-tuning text	GPT-generated answers	MiniGPT-4

Dataset examples

Table 2: Examples in VL-MIA/image non-member data are generated by DALL-E or collected from recent Flickr websites.

Dataset	Member	Non-member	Member	No
VL-MIA/DALL-E				More
VL-MIA/Flickr				Selo

on-member

Experiments

We conduct MIAs on open-source LLaVA and closed-source model GPT-4.

Table 3: Im	age MIA	on	VL-N	$/\mathbf{IIA}/\mathbf{I}$	Flickr on	Table 4: 1	Image M	IA on G	PT-4 .
LLaVA with a Metric	a size of 20)00. img	inst	desp	inst+desp	Metric		VL-MIA/ DALL-E	VL-MIA/ Flickr
Perplexity [*] Min 10% Prob [*]		N/A N/A	0.365	0.665	0.561	Perplexity/zlib* Max_Prob_Gap		$\frac{0.807}{0.516}$	0.520 0.486
Min_20% Prob* Aug_KL Max_Prob_Gap		N/A 0.586 0.602	$\begin{array}{c} 0.335\\ 0.535\\ 0.516\end{array}$	0.619 0.483 0.639	$0.345 \\ 0.504 \\ 0.637$	Rényi ($\alpha = 0.5$)	Max_0% Max_10% Max_100%	0.697 0.749 0.815	$\begin{array}{c} 0.571 \\ 0.604 \\ \underline{0.605} \end{array}$
ModRényi*	$\alpha = 0.5$ $\alpha = 1$ $\alpha = 2$	N/A N/A N/A	0.528 0.379 0.528	0.658 0.656 0.659		Rényi ($\alpha = 1$)	Max_0% Max_10% Max_100%	0.688 0.747 0.790	0.572 0.591 0.630
Rényi ($\alpha = 0.5$)	Max_0% Max_10% Max_100%	0.559 0.561 0.711	0.647 0.647 0.685	0.656 0.659 0.687	0.648 0.675 0.695	Rényi ($\alpha = \infty$)	Max_0% Max_10% Max_100%	$0.685 \\ 0.708 \\ 0.781$	$0.561 \\ 0.549 \\ 0.583$

See more experiments in the paper

Future work

- We would like to extend the method to a broader class of multimodal models that incorporate speech or video modalities.
- Our proposed method is semi-black-box, and requires the full probability distribution of the next token prediction. We would like to tackle the case where more or fewer internal workings of VLLMs are available.

References

[1] Reza Shokri et al. "Membership inference attacks against machine learning models". In: 2017 IEEE symposium on security and privacy (SP). IEEE. 2017, pp. 3–18.

- [2] Deyao Zhu et al. "MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models". In: The Twelfth International Conference on Learning Representations. 2023.
- [3] Haotian Liu et al. "Visual instruction tuning". In: Advances in neural information processing systems 36 (2023).
- [4] Peng Gao et al. "LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model". In: arXiv preprint arXiv:2304.15010 (2023).
- [5] Alfréd Rényi. "On measures of entropy and information". In: *Proceedings of the fourth* Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics. Vol. 4. University of California Press. 1961, pp. 547–562.
- [6] Weijia Shi et al. "Detecting Pretraining Data from Large Language Models". In: The Twelfth International Conference on Learning Representations. 2024. URL: https: //openreview.net/forum?id=zWqr3MQuNs.

Acknowledgements

HASLERSTIFTUNG

FNSNF SWISS NATIONAL SCIENCE FOUNDATION

