
Multi-Step Preference Optimization via
Two-Player Markov Games

Yongtao Wu*1, Luca Viano*1, Yihang Chen2, Zhenyu Zhu1, Quanquan Gu†1, and Volkan Cevher†2

1EPFL 2UCLA

Multi-Step Preference Optimization via
Two-Player Markov Games

Yongtao Wu*1, Luca Viano*1, Yihang Chen2, Zhenyu Zhu1, Quanquan Gu†1, and Volkan Cevher†2

1EPFL 2UCLA

Introduction

Our contributions:
• We formulate multi-step preference optimization as a two-player par-
tially observable Markov game. Unlike [1, 2, 3] who focus on the
preference feedback at the final state, we assume that the preference
signal is received at each step. Such feedback allows the model to
better identify which steps are correct or erroneous, potentially en-
hancing learning efficiency and accuracy.

• We propose Multi-step Preference Optimization (MPO) based on the
natural actor-critic framework and Optimistic Multi-step Preference
Optimization (OMPO), built upon the optimistic online gradient
descent. Theoretically, we show that OMPO requires O(ϵ−1) policy
updates to converge to an ϵ-approximate Nash equilibrium, com-
pared to O(ϵ−2) by the algorithms provided in [1, 2, 3]. Our result
cannot be trivially extended by [4] due to the partially observable
nature of Markov game. We bypass this difficulty by parameterizing
the game over occupancy measures.

• We provide practical implementations of both MPO and OMPO for
LLM alignment. Numerical results show that the proposed methods
achieve considerable improvement on MT-bench-101, compared to
the multi-step variant of DPO.

Multi-step alignment as two-player
Markov games

We can cast the multi-step alignment process as a finite-horizon MDP.

• We define sh = [x1, a1, . . . , xh−1, ah−1, xh] as the state at h > 1.

• We define the action ah as the answer given sh.

• Particularly, we have s1 = x1. The prompt in the next state is
sampled under the transition xh+1 ∼ f (·|sh, ah), which is equiv-
alent to sh+1 ∼ f (·|sh, ah). The terminal state is sH+1.

• We define the pair-wise reward function of two state-action
pairs as the preference of two trajectories: r(sh, ah, s

′
h, a

′
h) =

P([sh, ah] ≻ [s′h, a
′
h]) .

• We define the initial state distribution ν1 is a distribution over
the initial prompt x1. Note that each state in S is a pair of sh
and s′h generated by two policies.

The multi-step setting covers a number of alignment problems:

Example 1 (Single-step alignment). A language model receives one
prompt and outputs one answer. Our framework covers the single-
step alignment by dissecting the answer into single tokens.

Example 2 (Chain-of-thought reasoning alignment). The horizon H
denotes the reasoning step, where x1 is the initial prompt and
x2, . . . , xH+1 are empty. Each ah corresponds to a reasoning step.

Example 3 (Mutli-turn conversation alignment). The horizon H de-
notes the total turn of conversation. In the h-th turn, xh is the prompt,
and ah is the answer.

Our goal is to identify the Nash equilibrium of the following two-player
Markov game:

(π∗, π∗) = argmax
π

min
π′

Es1∼ν1,sh,ah,s
′
h,a

′
h

[ H∑
h=1

r(sh, ah, s
′
h, a

′
h)
]
,

where s1 = s′1 = x1, ah ∼ π(·|sh), a′h ∼ π′(·|s′h), sh ∼
f (·|sh−1, ah−1), s

′
h ∼ f (·|s′h−1, a

′
h−1).
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Method

Theorem 4. Consider Alg.1 and assume that the reference policy is
uniformly lower bounded by π, then there exists a policy π̄T such that

dπ̄
T

h = 1
T

∑T
t=1 d

πt
h ,∀h ∈ [H ], and it holds that for T = 16H4 log π−1

ϵ2
the

policy pair (π̄T , π̄T ) is an ϵ-approximate Nash equilibrium. Therefore,

Alg.1 outputs an ϵ-approximate Nash equilibrium after 16H4 log π−1

ϵ2
policy updates.

Theorem 5 (Convergence of OMPO). Consider Alg.2 and assume the
occupancy measure of the reference policy is uniformly lower bounded

by d. Moreover, let D be 1/λ strongly convex, i.e. D(p||q) ≥ ∥p−q∥21
2λ .

Then, setting T = 10H log d−1

βϵ and β ≤ 1√
2λ
, we ensure that the output

of Alg.2 is an ϵ-approximate Nash equilibrium. Therefore, we need at

most 10H log d−1

βϵ policy updates.

Experiments

Table 1: Evaluation results on MT-bench-101 dataset. We can observe that both of the proposed

algorithms MPO and OMPO considerably outperform the baseline in terms of the score.

Model
Perceptivity Adaptability Interactivity

Memory Understanding Interference Rephrasing Reflection Reasoning Questioning
Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

DPO (iter=1) 6.361 7.889 6.483 7.699 8.149 8.973 7.098 7.423 3.448 6.123 3.421 4.492 5.639 5.858
DPO (iter=2) 6.327 7.611 6.206 8.106 8.052 9.111 6.670 7.153 3.494 5.884 3.360 4.691 5.837 6.078
DPO (iter=3) 5.391 6.019 4.521 6.890 6.631 8.177 5.437 5.723 3.448 5.295 3.142 4.015 5.256 5.529
SPPO (iter=1) 6.475 7.432 7.464 7.714 8.353 8.580 6.917 6.714 4.136 5.055 4.403 5.400 6.036 5.966
SPPO (iter=2) 6.541 7.516 7.496 7.808 8.313 8.731 7.077 6.867 4.136 5.281 4.488 5.477 6.098 5.751
SPPO (iter=3) 6.577 7.575 7.547 7.944 8.365 8.797 7.040 6.865 4.442 5.185 4.346 5.394 6.092 5.906

Step-DPO (iter=1) 6.433 7.463 7.054 7.790 8.157 8.593 6.827 6.748 4.234 4.849 4.236 5.519 5.982 6.171
Step-DPO (iter=2) 6.553 7.616 7.043 7.925 8.147 8.662 6.790 6.878 4.331 5.048 4.366 5.734 6.391 6.254
Step-DPO (iter=3) 6.442 7.665 7.023 7.767 8.016 8.589 6.723 6.581 4.305 5.014 4.153 5.453 6.202 6.257

MPO⋆ (iter=1) 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873
MPO⋆ (iter=2) 6.735 7.838 7.723 8.196 8.590 9.027 7.347 7.209 4.240 5.137 4.469 5.531 6.181 6.061
MPO⋆ (iter=3) 6.733 7.868 7.686 8.289 8.510 9.078 7.330 7.529 4.461 4.829 4.225 5.366 6.198 6.155
OMPO⋆ (iter=2) 6.736 7.733 7.723 8.257 8.478 9.122 7.300 7.421 4.123 5.288 4.506 5.513 6.179 5.923
OMPO⋆ (iter=3) 6.776 7.649 7.792 8.281 8.578 9.136 7.424 7.635 4.377 5.308 4.312 5.455 6.187 5.954
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