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Overview
In this paper, we provide an initial analysis to the following question:

How does IW affect bias-variance trade-off in high-capacity models?

To summarize our contributions:
• We present the asymptotic expansion of high-dimensional kernels
K(x,x′) under covariate shifts, where the nonlinearity in kernels
can be eliminated by the kernel function curvature.

• For variance, we demonstrate that the IW strategy can be regarded
as an implicit data-dependent regularization on the respective kernel.

• For bias, we demonstrate two cases: 1) near interpolation, and 2)
some proper regularization parameter.

Problem Setting
Notations:
• Data.
– Training distribution: p. Test distribution: q.
– Re-weighting distribution q. Re-weighting function w(x) =

dq(x)/dp(x).
– The label y is generated by fρ, y(x) = fρ(x) + ε, and E[ε] = 0,

V[ε] ≤ σ2
ε .

• Kernel. The reproducing kernel Hilbert space (RKHS) H is a Hilbert
space H endowed with the inner product ⟨·, ·⟩H of functions f : X →
R with a reproducing kernel K : X × X → R where K(·) ∈ H
and f(x) = ⟨f,K(x, ·)⟩H. Specifically, we consider the inner-product
kernels, K(x,x′) := h (⟨x,x′⟩/d).

• Task: Given n training data Z = {(xi, yi) ∼ p}ni=1, the estimator of
KRR in high dimensions under a general IW function w(x) is given

by fλ,Z := argminf∈H

{
1
n

∑n
i=1 w(xi) (f (xi)−yi)2+λ∥f∥2H

}
, where

λ > 0 is the regularization parameter.

Assumptions (abbreviated):
Data. Let Σp,Σq be the covariance matrix of the distribution p, q.
• (Sub-Gaussian) Let x ∼ p, then Σ−1

p x is sub-Gaussian with identity
variance and bounded items, and similarly for q.

• (Covariance) We assume max{∥Σp∥, ∥Σq∥} = O(1). Define Σpq :=
Σ−1

p Σq, and ∃cpq ≥ 0 so that Tr(Σpq)/d ≲ dcpq . To limit the distri-

bution shifts, we additionally assume cpq < 2θq − 1
2 = 1

2 − 4
8+mq

.

• (Ratio) The ratio w := dq/dp, w := dq/dp’s norm in some space is
upper bounded by constants dependent on the dimension d.

Model:
• (Source condition): We have fρ ∈ H, and there exists 1

2 ≤ r <
1, gρ ∈ L2

q such that fρ = (Lq)
rgρ. We additionally assume

max{∥fρ∥H, ∥gρ∥q, ∥fρ∥∞} ≲ dcH .
• (Capacity condition): For any λ > 0, there exists Eµ > 0 and
sµ ∈ [0, 1] such that for distribution µ ∈ {q, q}, Nµ(λ) := Tr((Lµ +
λ)−1Lµ) ≤ E2

µλ
−sµ ,∀λ ∈ (0, 1] .

Kernel: Asymptotic Expansion
Lemma 1. Assume the kernel K is the inner-product kernel,
K(x,x′) := h (⟨x,x′⟩/d), or the radial kernel, K(x,x′) := h(−∥x −
x′∥22/d), and the training data X ∼ p.
(1) Under suitable assumptions, we have ∥K(X,X)−K lin(X,X)∥2 →
0, as n, d → ∞, n/d → ζ, where K lin(X,X) is defined by

K lin(X,X) := αp11
⊤ + βp

XX⊤

d + γpI + Tp, with non-negative pa-
rameters αp, βp, γp, and the additional matrix Tp given in Table 1.
(2) Under suitable assumptions, with cpq < 2θq − 1/2, with the train-
ing data X ∼ p and a test data x ∼ q, we have Eq∥K(X,x) −
K lin(X,x)∥2 → 0, as n, d→ ∞, n/d→ ζ, where K lin(x,X) is defined
by K lin(X,x) := βpq

Xx
d + Tpq(X,x), with non-negative parameters

βpq, and the additional vector Tpq given in Table 1.

Table 1: Parameters of the linearized kernel K lin involved with the
curvature of h, when X ∼ p.

Parameters Inner-Product Kernels Radial Kernels

αp h(0) + h′′(0)
Tr(Σ2

p)
2d2 h(−2τp) + 2h′′(−2τp)

Tr(Σ2
p)

d2

βp h′(0) 2h′(−2τp)

γp h(τp)− h(0)− τph
′(0) h(0)− 2τph

′(−2τp)− h(−2τp)

Tp 0n×n −h′(−2τp)A+ 1
2h

′′(−2τp)A⊙A 1

βpq h′(0) 2h′(−(τp + τq))

Tpq 0n×1 −h(−(τp + τq)) · 1− βpq

2 A(X,x) 2

1 A := 1ψ⊤ +ψ1⊤, where ψ ∈ Rn with ψi := ∥xi∥22/d− τp.
2 A(X,x) := ψx +ψ, where ψx = ∥x∥22/d− τq.

Main Results
Bias-variance decomposition: We have the following bias-variance de-
composition:

Ey|X∥fλ,Z − fρ∥2q = Ey|X∥fλ,Z − fλ,X∥2q + ∥fλ,X − fρ∥2q := V + B2 .

where fλ,X := argminf∈H

{
1
n

∑n
i=1 w(xi) (f (xi)−fρ(xi))

2
+λ∥f∥2H

}
.

Variance:

Theorem 2 (Data-dependent regularization). Let δ ∈ (0, 1), then for
large d, with probability at least 1− δ − 2d−2 with respect to a draw of
X ∼ p and ϵ > 0, the variance can be estimated by

V ≤ 8σ2
ε∥Σq∥
d N

(
XX⊤

d
+
λn

βp
W (X)

−1
;
γp
βp

)
︸ ︷︷ ︸

dominated term Vx

+
8σ2

ε

γ2
p
d−(4θq−1−2cpq) log4(1+ϵ) d .

The dominated term in Theorem 2 can be represented as

Vx ≍ 1

d
N

(
XX⊤

d
+
λn

βp
W (X)

−1
;
γp
βp

)
,

which implies that the variance is well controlled by the capacity of

K lin + λnW
−1

.

Bias:
Theorem 3 (Bias under arbitrary λ). Let δ ∈ (0, 1), we have the bias B
is upper bounded as B ≤ Bin + Biw , where Bin is the intrinsic bias that
only depends on the problem of covariate shift from p to q via the ratio
w(x), and Bin :=Tr

(
K linW

)
/n . The second term is the re-weighting

bias Biw that depends on the choice of w(x), w(x), and λ. When w = w,
we have Biw := λ2nN

(
K linW , nλ

)
+o(1), with probability at least 1−4δ

for sufficiently large d.

Theorem 4 (Bias under some λ). Under some assumptions on the data
and model, with proper selection of cλ and Cλ, when choosing λ :=
·Cλn

−cλ , then with probability at least 1 − δ, for sufficiently large d,
when cH < rcλ, it holds that

B ≲ n−rcλ+cH∥Lq(Lq + λ)−1∥1/2 .

For general λ, we have, with ≲ here hiding the dependence on n,

B ≲ (λr + λ−
1
2 )∥Lq(Lq + λ)−1∥ 1

2 .
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