High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Yihang Chen¹ Fanghui Liu² Taiji Suzuki³ Volkan Cevher¹ ¹EPFL ²University of Warwick ³The University of Tokyo

Overview

In this paper, we provide an initial analysis to the following question:

How does IW affect bias-variance trade-off in high-capacity models?

To summarize our contributions:

- We present the asymptotic expansion of high-dimensional kernels $K(\mathbf{x}, \mathbf{x}')$ under covariate shifts, where the nonlinearity in kernels can be eliminated by the kernel function curvature.
- For variance, we demonstrate that the IW strategy can be regarded as an implicit data-dependent regularization on the respective kernel.
- For bias, we demonstrate two cases: 1) near interpolation, and 2) some proper regularization parameter.

 $\sum_{i=1}^n$, the estimator of 2 $+\lambda \|f\|_2^2$ $\mathcal H$ \int , where

Problem Setting

line 1: Parameters of the linearized with the

 $^{\prime\prime}(-2\tau_p)$ $\text{Tr}\Big(\bm{\Sigma}_p^2\Big)$ $\overline{d^2}$ $- h(-2\tau_p)$ $(-2\tau_p)\boldsymbol{A}\odot\boldsymbol{A}^{-1}$ $+ \tau_q))$ $\overline{\beta_{pq}}$ 2 $\bm A(\bm X,\bm x)$ 2

Notations:

• Data.

- Training distribution: p . Test distribution: q . – Re-weighting distribution \overline{q} . Re-weighting function $\overline{w}(\boldsymbol{x}) =$ $\mathrm{d}\overline{q}(\boldsymbol{x})/\mathrm{d}p(\boldsymbol{x}).$
- The label y is generated by f_{ρ} , $y(\boldsymbol{x})$ $\mathbb{V}[\varepsilon] \leq \sigma_{\varepsilon}^2$ $\frac{2}{\varepsilon}$.
- Kernel. The reproducing kernel Hilbert space (RKHS) \mathcal{H} is a Hilbert space $\mathcal H$ endowed with the inner product $\langle\cdot,\cdot\rangle_{\mathcal H}$ of functions $f:\mathcal X\to$ R with a reproducing kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ where $K(\cdot) \in \mathcal{H}$ and $f(\boldsymbol{x}) = \langle f, K(\boldsymbol{x}, \cdot) \rangle_{\mathcal{H}}$. Specifically, we consider the inner-product kernels, $K(\boldsymbol{x}, \boldsymbol{x}') := h\left(\langle \boldsymbol{x}, \boldsymbol{x}' \rangle/d\right)$.
- Task: Given *n* training data $\mathbf{Z} = \{(\boldsymbol{x}_i, y_i) \sim p\}_{i=1}^n$ KRR in high dimensions under a general IW function $\overline{w}(\boldsymbol{x})$ is given by $f_{\lambda, \mathbf{Z}} := \arg \min_{f \in \mathcal{H}}$ \int ¹ \overline{n} \sum_{i}^{n} $\frac{n}{i=1}\,\overline{w}(\boldsymbol{x}_i)\,(f\left(\boldsymbol{x}_i\right)\!-\!y_i)$ $\lambda > 0$ is the regularization parameter.
- variance and bounded items, and similarly for q.
- **Data**. Let Σ_p , Σ_q be the covariance matrix of the distribution p, q. • (Sub-Gaussian) Let $x \sim p$, then $\Sigma_p^{-1}x$ is sub-Gaussian with identity
- bution shifts, we additionally assume $c_{pq} < 2\theta_q \frac{1}{2}$
- upper bounded by constants dependent on the dimension d . Model:
- $1,\overline{g}_{\rho }\;\;\in \;\;{\cal L}_{q}^{2}$ $\max\{\|f_\rho\|_\mathcal{H}, \|\overline{g}_\rho\|_q, \|f_\rho\|_\infty\} \lesssim d^{c_\mathcal{H}}.$
- $(\lambda)^{-1}L_{\mu})\leq E_{\mu}^{2}\lambda^{-s_{\mu}}, \forall \lambda\in(0,1].$
-

Assumptions (abbreviated):

$$
= f_{\rho}(\boldsymbol{x}) + \varepsilon
$$
, and $\mathbb{E}[\varepsilon] = 0$,

where $f_{\lambda,\boldsymbol{X}} := \arg \min_{f \in \mathcal{H}}$ \overline{n} $\sum_{i=1}^{n}$ Variance:

Theorem 2 (Data-dependent regularization). Let $\delta \in (0,1)$, then for large d, with probability at least $1 - \delta - 2d^{-2}$ with respect to a draw of $\boldsymbol{X} \sim p$ and $\epsilon > 0$, the variance can be estimated by

which implies that the variance is well controlled by the capacity of $\boldsymbol{K}^{\text{lin}}+\lambda n \boldsymbol{\overline{W}}$ -1 .

lions@epfl

Kernel: Asymptotic Expansion

Lemma 1. Assume the kernel K is the inner-product kernel, $K(\boldsymbol{x}, \boldsymbol{x}') := h\left(\langle \boldsymbol{x}, \boldsymbol{x}' \rangle/d\right)$, or the radial kernel, $K(\boldsymbol{x}, \boldsymbol{x}') := h(-\|\boldsymbol{x} - \boldsymbol{x}\|)$ $\boldsymbol{x}'\rVert^2_2$ $\mathbf{2}^2/d), \ and \ the \ training \ data \ \boldsymbol{X} \sim p.$ (1) Under suitable assumptions, we have $\|\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) - \boldsymbol{K}^{\text{lin}}(\boldsymbol{X}, \boldsymbol{X})\|_2 \to$ $\begin{array}{cccc} 0, & as & n, d \rightarrow \infty, n/d \rightarrow \zeta, \;\; where \;\; \textbf{K}^{\text{lin}}(\textbf{X},\textbf{X}) \;\; is \;\; defined \;\; by \end{array}$ $\boldsymbol{K}^{\text{lin}}(\boldsymbol{X},\boldsymbol{X})\,:=\,\alpha_p1\mathbb{1}^\top + \beta_p$ $\bm{X} \bm{X}^\top$ $\frac{\boldsymbol{X}^{\top}}{d}$ + $\gamma_p \boldsymbol{I}$ + $\boldsymbol{T_p}, \textit{ with non-negative parameters } p a$. rameters α_p , β_p , γ_p , and the additional matrix T_p given in Table 1. (2) Under suitable assumptions, with $c_{pq} < 2\theta_q - 1/2$, with the train- \hat{u} and \boldsymbol{X} \sim p and a test data \boldsymbol{x} \sim q, we have \mathbb{E}_q $\|\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{x}) - \boldsymbol{X} \|\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{x})\|$ $\bm{K}^{\text{lin}}(\bm{X},\bm{x})\|_2\rightarrow 0,\text{ as }n,d\rightarrow\infty,n/d\rightarrow\zeta,\text{ where }\bm{K}^{\text{lin}}(\bm{x},\bm{X})\text{ is defined}$ $\mathit{by} \; \; \mathcal{K}^{\mathrm{lin}}(\bm{X},\bm{x}) \, := \, \beta_{pq} \frac{\bm{X} \bm{x}}{d}$ $\frac{\delta \boldsymbol{x}}{d} + \boldsymbol{T}_{pq}(\boldsymbol{X}, \boldsymbol{x}), \ \textit{with non-negative parameters}$ β_{pq} , and the additional vector T_{pq} given in Table 1.

Theorem 3 (Bias under arbitrary λ). Let $\delta \in (0,1)$, we have the bias B is upper bounded as $B \leq B_{in} + B_{iw}$, where B_{in} is the intrinsic bias that only depends on the problem of covariate shift from p to q via the ratio $w(\boldsymbol{x}), \ and \ \mathsf{B}_{\mathrm{in}} := \text{Tr}\left(\boldsymbol{K}^{\mathrm{lin}}\boldsymbol{W}\right)/n$. The second term is the re-weighting bias B_{iw} that depends on the choice of $\overline{w}(\boldsymbol{x})$, $w(\boldsymbol{x})$, and λ . When $w = \overline{w}$, we have $B_{iw} := \lambda^2 n \mathcal{N} (\mathbf{K}^{\text{lin}} \mathbf{W}, n\lambda) + o(1)$, with probability at least 1–48 for sufficiently large d.

Theorem 4 (Bias under some λ). Under some assumptions on the data and model, with proper selection of c_{λ} and C_{λ} , when choosing $\lambda :=$ $\cdot C_{\lambda} n^{-c_{\lambda}}$, then with probability at least $1 - \delta$, for sufficiently large d, when $c_{H} < \overline{r}c_{\lambda}$, it holds that

 $B \lesssim n^{-\overline{r}c_{\lambda}}$

For general λ , we have, with \leq here hiding the dependence on n,

 $B \lesssim (\lambda^{\overline{r}} + \lambda)$

 $\mathbf{1}^1 \mathbf{A} := \mathbb{1} \boldsymbol{\psi}^\top + \boldsymbol{\psi} \mathbb{1}^\top$, where $\boldsymbol{\psi} \in \mathbb{R}^n$ with $\psi_i := \|\boldsymbol{x}_i\|_2^2$ $\frac{2}{2}/d-\tau_p.$ 2 $\boldsymbol{A}(\boldsymbol{X},\boldsymbol{x}):=\psi_{\boldsymbol{x}}+\boldsymbol{\psi}, \text{ where } \psi_{\boldsymbol{x}}=\|\boldsymbol{x}\|_{2}^{2}$ $\frac{2}{2}/d-\tau_q.$

Main Results

Bias-variance decomposition: We have the following bias-variance decomposition:

$$
\mathbb{E}_{\mathbf{y}|\mathbf{X}} \|\overline{f}_{\lambda,\mathbf{Z}} - f_{\rho}\|_{q}^{2} = \mathbb{E}_{\mathbf{y}|\mathbf{X}} \|\overline{f}_{\lambda,\mathbf{Z}} - \overline{f}_{\lambda,\mathbf{X}}\|_{q}^{2} + \|\overline{f}_{\lambda,\mathbf{X}} - f_{\rho}\|_{q}^{2} := V + B^{2}.
$$

where $\overline{f}_{\lambda,\mathbf{X}} := \arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \overline{w}(\mathbf{x}_{i}) \left(f(\mathbf{x}_{i}) - f_{\rho}(\mathbf{x}_{i})\right)^{2} + \lambda \|f\|_{\mathcal{H}}^{2} \right\}.$

$$
\mathsf{V} \leq \frac{8\sigma_{\varepsilon}^2\|\mathbf{\Sigma}_q\|}{d} \, \mathcal{N}\!\left(\frac{\boldsymbol{X}\boldsymbol{X}^\top}{d} + \frac{\lambda n}{\beta_p} \overline{\boldsymbol{W}}\!\left(\boldsymbol{X}\right)^{-1};\frac{\gamma_p}{\beta_p}\right) + \frac{8\sigma_{\varepsilon}^2}{\gamma_p^2} d^{-(4\theta_q - 1 - 2c_{pq})}\log^{4(1+\epsilon)} d\,.
$$

$$
\xrightarrow{dominated\ term\ \mathsf{V}_{\boldsymbol{x}}}
$$

The dominated term in Theorem 2 can be represented as

$$
\mathsf{V}_{\boldsymbol{x}}\asymp\frac{1}{d}\mathcal{N}\left(\frac{\boldsymbol{X}\boldsymbol{X}^{\top}}{d}+\frac{\lambda n}{\beta_p}\overline{\boldsymbol{W}}(\boldsymbol{X})^{-1};\frac{\gamma_p}{\beta_p}\right)\,,
$$

Bias:

$$
+c_{\mathcal{H}}\|L_q(L_{\overline{q}}+\lambda)^{-1}\|^{1/2}.
$$

$$
^{-\frac{1}{2}})\|L_q(L_{\overline{q}}+\lambda)^{-1}\|^{\frac{1}{2}}\,.
$$

Related works:

1. Liang, T., Rakhlin, A. (2020). Just interpolate: Kernel "ridgeless" regression can generalize.

2. Liu, F., Liao, Z., Suykens, J. (2021, March). Kernel regression in high dimensions: Refined analysis beyond double descent. In International Conference on Artificial Intelligence and Statistics (pp. 649-657). PMLR.

• (Covariance) We assume $\max\{\|\Sigma_p\|, \|\Sigma_q\|\} = O(1)$. Define $\Sigma_{pq} :=$ $\sum_{p}^{-1} \sum_{q}$, and $\exists c_{pq} \geq 0$ so that $\text{Tr}(\sum_{pq}^{\infty})/d \lesssim d^{c_{pq}}$. To limit the distri-2 $=\frac{1}{2}$ 2 $-\frac{4}{8+r}$ $8+m_q$. • (Ratio) The ratio $w := dq/dp, \overline{w} := d\overline{q}/dp$'s norm in some space is

• (Source condition): We have $f_{\rho} \in \mathcal{H}$, and there exists $\frac{1}{2}$ 2 $\leq \bar{r} <$ a such that $f_{\rho} = (L_{\overline{q}})^{\overline{r}}\overline{g}_{\rho}$. We additionally assume • (Capacity condition): For any $\lambda > 0$, there exists $E_{\mu} > 0$ and $s_{\mu} \in [0,1]$ such that for distribution $\mu \in \{q,\overline{q}\},\, \mathcal{N}_{\mu}(\lambda) := \text{Tr}((L_{\mu} +$