High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Yihang Chen¹ Fanghui Liu² Taiji Suzuki³ Volkan Cevher¹ ¹EPFL ²University of Warwick ³The University of Tokyo

Overview

In this paper, we provide an initial analysis to the following question:

How does IW affect bias-variance trade-off in high-capacity models?

To summarize our contributions:

- We present the asymptotic expansion of high-dimensional kernels $K(\boldsymbol{x}, \boldsymbol{x'})$ under covariate shifts, where the nonlinearity in kernels can be eliminated by the kernel function curvature.
- For variance, we demonstrate that the IW strategy can be regarded as an implicit data-dependent regularization on the respective kernel.
- For bias, we demonstrate two cases: 1) near interpolation, and 2) some proper regularization parameter.

Kernel: Asymptotic Expansion

Lemma 1. Assume the kernel K is the inner-product kernel, $K(\boldsymbol{x}, \boldsymbol{x}') := h(\langle \boldsymbol{x}, \boldsymbol{x}' \rangle / d), \text{ or the radial kernel, } K(\boldsymbol{x}, \boldsymbol{x}') := h(-\|\boldsymbol{x} - \boldsymbol{x}'\|)$ $\mathbf{x}' \|_{2}^{2}/d$, and the training data $\mathbf{X} \sim p$. (1) Under suitable assumptions, we have $\|\mathbf{K}(\mathbf{X}, \mathbf{X}) - \mathbf{K}^{\text{lin}}(\mathbf{X}, \mathbf{X})\|_2 \rightarrow \|\mathbf{X}\|_2$ $0, \hspace{0.1in} as \hspace{0.1in} n, d \hspace{0.1in}
ightarrow \hspace{0.1in} \infty, n/d \hspace{0.1in}
ightarrow \hspace{0.1in} \zeta, \hspace{0.1in} where \hspace{0.1in} oldsymbol{K}^{\mathrm{lin}}(oldsymbol{X},oldsymbol{X}) \hspace{0.1in} is \hspace{0.1in} defined \hspace{0.1in} by$ $\mathbf{K}^{\text{lin}}(\mathbf{X}, \mathbf{X}) := \alpha_p \mathbb{1}\mathbb{1}^\top + \beta_p \frac{\mathbf{X}\mathbf{X}^\top}{d} + \gamma_p \mathbf{I} + \mathbf{T}_p, \text{ with non-negative pa-}$ rameters α_p , β_p , γ_p , and the additional matrix T_p given in Table 1. (2) Under suitable assumptions, with $c_{pq} < 2\theta_q - 1/2$, with the training data $X \sim p$ and a test data $x \sim q$, we have $\mathbb{E}_q \| K(X, x) - p \| K(X, x) \| K$ $\mathbf{K}^{\text{lin}}(\mathbf{X}, \mathbf{x}) \|_2 \to 0, \text{ as } n, d \to \infty, n/d \to \zeta, \text{ where } \mathbf{K}^{\text{lin}}(\mathbf{x}, \mathbf{X}) \text{ is defined}$ by $K^{\text{lin}}(X, x) := eta_{pq} \frac{Xx}{d} + T_{pq}(X, x)$, with non-negative parameters β_{pq} , and the additional vector T_{pq} given in Table 1.

Table 1:	Parameters	of t	he line	earized	kernel	$oldsymbol{K}^{\mathrm{lin}}$	invol
curvature	e of h, when h	$X\sim$, p.				

Parameters	Inner-Product Kernels	Radial Kerr
α_p	$h(0) + h''(0) \frac{\operatorname{Tr}(\boldsymbol{\Sigma}_p^2)}{2d^2}$	$h(-2\tau_p) + 2h''(-2)$
β_p	h'(0)	$2h'(-2 au_p$
γ_p	$h(\tau_p) - h(0) - \tau_p h'(0)$	$h(0) - 2\tau_p h'(-2\tau_p)$
$oldsymbol{T}_p$	$0_{n imes n}$	$-h'(-2\tau_p)\mathbf{A} + \frac{1}{2}h''(-2\tau_p)\mathbf{A} + \frac{1}{2}h'''$
β_{pq}	h'(0)	$2h'(-(\tau_p + \tau_p))$
$egin{array}{c} egin{array}{c} egin{array}$	$0_{n imes 1}$	$-h(-(\tau_p+\tau_q))\cdot \mathbb{1} -$
$1 \qquad 1 \qquad$		$\cdot 1 / 1 / 1 / 1 $

 $\begin{array}{l} {}^1 \boldsymbol{A} := \mathbbm{1} \boldsymbol{\psi}^\top + \boldsymbol{\psi} \mathbbm{1}^\top, \text{ where } \boldsymbol{\psi} \in \mathbb{R}^n \text{ with } \psi_i := \|\boldsymbol{x}_i\|_2^2/d - \tau_p. \\ {}^2 \boldsymbol{A}(\boldsymbol{X}, \boldsymbol{x}) := \psi_{\boldsymbol{x}} + \boldsymbol{\psi}, \text{ where } \psi_{\boldsymbol{x}} = \|\boldsymbol{x}\|_2^2/d - \tau_q. \end{array}$

Problem Setting

olved with the

rnels $-2 au_p)rac{\operatorname{Tr}(\mathbf{\Sigma}_p^2)}{d^2}$ $-h(-2\tau_p)$ $(-2 au_p)oldsymbol{A}\odotoldsymbol{A}^{-1}$ $(au_q))$ $rac{eta_{pq}}{2}oldsymbol{A}(oldsymbol{X},oldsymbol{x})^{-2}$

Notations:

• Data.

- Training distribution: p. Test distribution: q. - Re-weighting distribution \overline{q} . Re-weighting function $\overline{w}(\boldsymbol{x}) = \overline{w}(\boldsymbol{x})$ $\mathrm{d}\overline{q}(\boldsymbol{x})/\mathrm{d}p(\boldsymbol{x}).$
- The label y is generated by f_{ρ} , $y(\mathbf{x}) = f_{\rho}(\mathbf{x}) + \varepsilon$, and $\mathbb{E}[\varepsilon] = 0$, $\mathbb{V}[\varepsilon] \le \sigma_{\varepsilon}^2.$
- **Kernel**. The reproducing kernel Hilbert space (RKHS) \mathcal{H} is a Hilbert space \mathcal{H} endowed with the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ of functions $f: \mathcal{X} \to \mathcal{X}$ \mathbb{R} with a reproducing kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ where $K(\cdot) \in \mathcal{H}$ and $f(\boldsymbol{x}) = \langle f, K(\boldsymbol{x}, \cdot) \rangle_{\mathcal{H}}$. Specifically, we consider the inner-product kernels, $K(\boldsymbol{x}, \boldsymbol{x'}) := h(\langle \boldsymbol{x}, \boldsymbol{x'} \rangle / d).$
- Task: Given n training data $\mathbf{Z} = \{(\mathbf{x}_i, y_i) \sim p\}_{i=1}^n$, the estimator of KRR in high dimensions under a general IW function $\overline{w}(\boldsymbol{x})$ is given by $\overline{f}_{\lambda,\mathbf{Z}} := \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \overline{w}(\mathbf{x}_i) \left(f(\mathbf{x}_i) - y_i \right)^2 + \lambda \|f\|_{\mathcal{H}}^2 \right\}, \text{ where }$ $\lambda > 0$ is the regularization parameter.

Main Results

Bias-variance decomposition: We have the following bias-variance decomposition:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{X}} \| \overline{f}_{\lambda,\boldsymbol{Z}} - f_{\rho} \|_{q}^{2} = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{X}} \| \overline{f}_{\lambda,\boldsymbol{Z}} - \overline{f}_{\lambda,\boldsymbol{X}} \|_{q}^{2} + \| \overline{f}_{\lambda,\boldsymbol{X}} - f_{\rho} \|_{q}^{2} := \mathsf{V} + \mathsf{B}^{2} .$$

where $f_{\lambda, \mathbf{X}} := \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \overline{w}(\mathbf{x}_i) \right\}$ Variance:

Theorem 2 (Data-dependent regularization). Let $\delta \in (0,1)$, then for large d, with probability at least $1 - \delta - 2d^{-2}$ with respect to a draw of $X \sim p \text{ and } \epsilon > 0$, the variance can be estimated by

$$\mathsf{V} \leq \frac{8\sigma_{\varepsilon}^{2} \|\boldsymbol{\Sigma}_{q}\|}{d} \underbrace{\mathcal{N}\left(\frac{\boldsymbol{X}\boldsymbol{X}^{\top}}{d} + \frac{\lambda n}{\beta_{p}} \overline{\boldsymbol{W}}(\boldsymbol{X})^{-1}; \frac{\gamma_{p}}{\beta_{p}}\right)}_{dominated \ term \ \mathcal{N}} + \frac{8\sigma_{\varepsilon}^{2}}{\gamma_{p}^{2}} d^{-(4\theta_{q}-1-2c_{pq})} \log^{4(1+\epsilon)} d \,.$$

aominatea term v_{π}

The dominated term in Theorem 2 can be represented as

$$\mathsf{V}_{\boldsymbol{x}} \asymp rac{1}{d} \mathcal{N}\left(rac{\boldsymbol{X}\boldsymbol{X}^{ op}}{d} + rac{\lambda n}{eta_p} \overline{\boldsymbol{W}}(\boldsymbol{X})^{-1}; rac{\gamma_p}{eta_p}
ight),$$

which implies that the variance is well controlled by the capacity of $K^{\text{lin}} + \lambda n \overline{W}^{-1}.$

lions@epfl 3

Assumptions (abbreviated):

$$-f(\mathbf{r}) \perp \epsilon$$
 and $\mathbb{R}[\epsilon] = 0$

- variance and bounded items, and similarly for q.
- **Data**. Let Σ_p, Σ_q be the covariance matrix of the distribution p, q. • (Sub-Gaussian) Let $\boldsymbol{x} \sim p$, then $\boldsymbol{\Sigma}_p^{-1} \boldsymbol{x}$ is sub-Gaussian with identity
- Model:
- $\max\{\|f_{\rho}\|_{\mathcal{H}}, \|\overline{g}_{\rho}\|_{q}, \|f_{\rho}\|_{\infty}\} \lesssim d^{c_{\mathcal{H}}}.$
- $\lambda)^{-1}L_{\mu} \leq E_{\mu}^{2}\lambda^{-s_{\mu}}, \forall \lambda \in (0,1].$

$$(f(\boldsymbol{x}_i) - f_{\rho}(\boldsymbol{x}_i))^2 + \lambda \|f\|_{\mathcal{H}}^2 \Big\}.$$

Bias:

Theorem 3 (Bias under arbitrary λ). Let $\delta \in (0, 1)$, we have the bias B is upper bounded as $B \leq B_{in} + B_{iw}$, where B_{in} is the intrinsic bias that only depends on the problem of covariate shift from p to q via the ratio $w(\boldsymbol{x}), \text{ and } \mathsf{B}_{\mathrm{in}} := \mathrm{Tr}\left(\boldsymbol{K}^{\mathrm{lin}} \boldsymbol{W}\right)/n$. The second term is the re-weighting bias B_{iw} that depends on the choice of $\overline{w}(\boldsymbol{x})$, $w(\boldsymbol{x})$, and λ . When $w = \overline{w}$, we have $\mathsf{B}_{iw} := \lambda^2 n \mathcal{N} (\mathbf{K}^{lin} \mathbf{W}, n\lambda) + o(1)$, with probability at least $1 - 4\delta$ for sufficiently large d.

Theorem 4 (Bias under some λ). Under some assumptions on the data and model, with proper selection of c_{λ} and C_{λ} , when choosing $\lambda :=$ $\cdot C_{\lambda} n^{-c_{\lambda}}$, then with probability at least $1-\delta$, for sufficiently large d, when $c_{\mathcal{H}} < \overline{r}c_{\lambda}$, it holds that

 $\mathsf{B} \lesssim n^{-\overline{r}c_{\lambda}+c}$

For general λ , we have, with \leq here hiding the dependence on n,

 $\mathsf{B} \lesssim (\lambda^{\overline{r}} + \lambda)$

Related works:

1. Liang, T., Rakhlin, A. (2020). Just interpolate: Kernel "ridgeless" regression can generalize.

2. Liu, F., Liao, Z., Suykens, J. (2021, March). Kernel regression in high dimensions: Refined analysis beyond double descent. In International Conference on Artificial Intelligence and Statistics (pp. 649-657). PMLR.

• (Covariance) We assume $\max\{\|\boldsymbol{\Sigma}_p\|, \|\boldsymbol{\Sigma}_q\|\} = O(1)$. Define $\boldsymbol{\Sigma}_{pq} :=$ $\Sigma_p^{-1}\Sigma_q$, and $\exists c_{pq} \geq 0$ so that $\operatorname{Tr}(\Sigma_{pq})/d \leq d^{c_{pq}}$. To limit the distribution shifts, we additionally assume $c_{pq} < 2\theta_q - \frac{1}{2} = \frac{1}{2} - \frac{4}{8+m_q}$. • (Ratio) The ratio $w := dq/dp, \overline{w} := d\overline{q}/dp$'s norm in some space is upper bounded by constants dependent on the dimension d.

• (Source condition): We have $f_{\rho} \in \mathcal{H}$, and there exists $\frac{1}{2} \leq \overline{r} < \overline{r}$ $1, \overline{g}_{\rho} \in \mathcal{L}^2_q$ such that $f_{\rho} = (L_{\overline{q}})^{\overline{r}} \overline{g}_{\rho}$. We additionally assume • (Capacity condition): For any $\lambda > 0$, there exists $E_{\mu} > 0$ and $s_{\mu} \in [0,1]$ such that for distribution $\mu \in \{q,\overline{q}\}, \mathcal{N}_{\mu}(\lambda) := \operatorname{Tr}((L_{\mu} +$

$$\mathcal{L}_{\mathcal{H}} \| L_q (L_{\overline{q}} + \lambda)^{-1} \|^{1/2}$$
.

$$(-\frac{1}{2}) \|L_q (L_{\overline{q}} + \lambda)^{-1}\|^{\frac{1}{2}}.$$