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In this paper, we provide an initial analysis to the following question:

How does IW affect bias-variance trade-off in high-capacity models?

To summarize our contributions:

e We present the asymptotic expansion of high-dimensional kernels
K(x,x’) under covariate shifts, where the nonlinearity in kernels
can be eliminated by the kernel function curvature.

e Lor variance, we demonstrate that the IW strategy can be regarded
as an implicit data-dependent regularization on the respective kernel.

e For bias, we demonstrate two cases: 1) near interpolation, and 2)
some proper regularization parameter.

Assume the

Lemma 1. kernel K 1s the nner-product kernel,
K(x,x") := h({x,x")/d), or the radial kernel, K(x,x") := h(—||lx —
x'||2/d), and the training data X ~ p.

(1) Under suitable assumptions, we have | K (X, X)-K"(X, X)|s —
0, as n,d — oo,n/d — (, where K"™(X,X) is defined by
K'"(X, X) := a,11" + 3, X‘;{T - v, I + T, with non-negative pa-
rameters ou,, By, Vp, and the additional matrix T, given in Table 1.
(2) Under suitable assumptions, with c,q < 20, — 1/2, with the train-
ing data X ~ p and a test data * ~ q, we have E | K(X,x) —
K'"(X,x)|ls =0, asn,d — oo,n/d — ¢, where K" (x, X)) is defined
by K" (X, x) := B, X;l"’ T, (X, x), with non-negative parameters
Bpq, and the additional vector Ty, given in Table 1.

Table 1: Parameters of the linearized kernel K"® involved with the
curvature of h, when X ~ p.

Parameters Inner-Product Kernels Radial Kernels
o h(0) + A" (0) TrQ(dzii) h(—21,) 4+ 2h" (—27,) Trgz;?’)
By h'(0) 21 (—=27p)
Tp h(1p) — h(0) — 7,A(0) h(0) — 27ph' (—27p) — h(—27p)
T, Or —NW (=27,) A+ ih"(—27,) A0 A
Bpq h'(0) 20" (—(7p + 74))
T, D Onx1 —h(=(1p +74)) - 1 — %A(X, z)

LA := 19" + 917, where ¥ € R with v¢; := ||z;|3/d — 7.
?A(X,x) := g + 1, where ¢, = [|z||5/d — 7,

O

Notations:

e Data.

— Training distribution: p. Test distribution: g.

— Re-weighting distribution §.  Re-weighting function w(x) =
dg(z)/dp().

— The label y is generated by f,, y(x) = f,(x) + ¢, and Ele] = 0,

Vie] < o2.

e Kernel. The reproducing kernel Hilbert space (RKHS) H is a Hilbert
space H endowed with the inner product (-, -}y of functions f : X —
R with a reproducing kernel K : X x X — R where K(-) € H
and f(x) = (f, K(x,-))%. Specifically, we consider the inner-product
kernels, K(x,x') := h ({(x,x")/d).

e Task: Given n training data Z = {(x;,y;) ~ p}I_;, the estimator of
KRR in high dimensions under a general IW function w(x) is given

— . n o — 2
by iz = argminges {2 S, W(@:) (f () ~9:) + 7| £3,}, where
A > 0 is the regularization parameter.

Bias-variance decomposition: We have the following bias-variance de-

composition:

HTA,X — pr?; =V +B”.

"3y|XH7/\,Z — prCQI = "3y|XH7,\,Z — 7,\,X||c21

where f x = argminsen { 3 I, @(@:) (f (@)= f, @)+l F113, }-

Variance:

Theorem 2 (Data-dependent regularization). Let 6 € (0,1), then for
large d, with probability at least 1 — § — 2d—2 with respect to a draw of
X ~p and € > 0, the variance can be estimated by
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dominated term Vg

The dominated term in Theorem 2 can be represented as
xXx'
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which implies that the variance is well controlled by the capacity of
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Assumptions (abbreviated):
Data. Let X, >, be the covariance matrix of the distribution p, q.
¢ (Sub-Gaussian) Let © ~ p, then X7 Lz is sub-Gaussian with identity

variance and bounded items, and similarly for g.

e (Covariance) We assume max{||2,|, ||X,||} = O(1). Define 3,, :=
¥ '3, and Jepg > 0 so that Tr(X,,)/d < d°e. To limit the distri-
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bution shifts, we additionally assume ¢, <20, — 5 =5 — g
q

¢ (Ratio) The ratio w := dq/dp,w := dg/dp’s norm in some space is
upper bounded by constants dependent on the dimension d.

Model:

e (Source condition): We have f, € H, and there exists = < T <
1,9, € Eg such that [, = (Lg)pr. We additionally assume
max{ | foll s [, s | Folloc} S d°.

o (Capacity condition): For any A > 0, there exists E, > 0 and
sy € [0,1] such that for distribution p € {q,q}, N,(A\) := Tr((L, +
AL, < EELA_S“,V)\ e (0,1].

Bias:
Theorem 3 (Bias under arbitrary A\). Let § € (0,1), we have the bias B

1s upper bounded as B < B;, + Biw , where B;, s the intrinsic bias that
only depends on the problem of covariate shift from p to q via the ratio
w(z), and Bi, :=Tr (K"™W) /n. The second term is the re-weighting
bias Biw that depends on the choice of w(x), w(x), and A. When w = w,
we have Biy := XN2nN (K"™W n\)+o(1), with probability at least 1—46
for sufficiently large d.

Theorem 4 (Bias under some \). Under some assumptions on the data
and model, with proper selection of c) and C)y, when choosing \ :=
-Chn™=%, then with probability at least 1 — o0, for sufficiently large d,
when cy < Tcy, 1t holds that

B < T | Ly(Lg + A) V2
For general A\, we have, with < here hiding the dependence on n,

B S (N4 A" 2) || Ly(Lg+ )2
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