Generalization of Scaled Deep ResNets in the Mean-Field Regime
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Question:

e Can we build a generalization analysis of trained Deep ResNets in the
mean-field setting?
Contributions:

e The paper provides the first minimum eigenvalue estimation (lower
bound) of the Gram matrix of the gradients for deep ResNet parameter-
1zed by the ResNet encoder’s parameters and MLP predictor’s parameters
in the mean-field regime.

* The paper proves that the KL divergence of feature encoder v and output
layer v can be bounded by a constant (depending only on network archi-
tecture parameters) during the training, which facilitates our generalization
analysis.

e This paper builds the connection between the Rademacher complexity re-
sult and KL divergence, and then derive the convergence rate O(1//n)
for generalization.

* The evolution of the ResNet layers v(8, s) can be characterized as
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* The evolution of the final layer distribution 7(w) can be characterized as

@(w,t) =V, - (T(W,t)vw 5L(7', V) (w,t))  t>0, (3)

where the functional derivative
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* We define one Gram matrix for the ResNet layers, G1(7,v) by G1(7,v) =
fol Gi(1,v,s)ds, Gi(7,v,s) =Egu (. sJ1(7,1,0,5)J1(T,1,0, s).

* We define the Gram matrix for the MLP parameter distribution 7, G5 (7, /)
by Ga(7,v) = Eyor(yJ2 (v, w)J2(v,w) ", where the row vector of J; is
defined as

(']Z(V7w))i,. :Dgwh(zl/(wia 1),(.0), 1<1<n.
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e The Gram matrix for the whole fietwork is G = o*°G + G-.

Basic Settings:

* The training set D,, = {(x;, y;) };~, is drawn from an unknown distribution
ton X X ), and ux 1s the marginal distribution of 1 over X',

 We consider a binary classification task, denoted by minimizing the ex-
pected risk, let £o_1(f,y) := 1{yf < O}.

* We employ the squared loss in ERM in training, i.e, £(f,y) := = (y — f)%.

* The hypothesis [ is parameterized by ResNet feature encoder and
a non-linear predictor, fr . The empirical loss L(r,v) =

oD, L(fru(x), y(T)).
Network Structure: (o, 5 will be determined later)

* The following ODE models the infinite death infinite width ResNet.

. /R o (z(x,s),0)dv(8,s), s € [0,1], z(x,0) = z. (1)

We denote the solution of Equation (1) as Z, (x, s).
 The whole network can be written as

fro(x) =" h(Z,(x,1),w)dT(w),
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KL divergence:

Lemma 4. Under Assumption 1, 2, 3, there exist a constant A := A(d), only
depending on the dimension d, such that Anin |G (70, Vo)] is lower bounded by

)\0 = )\min(G(T(), Vo)) Z )\min(GQ(TO, Vo)) Z A(d) .

Theorem 5. Assume the PDE (3) has solution 7, € P?, and the PDE (2) has

solution vy € C(P?;[0,1]). Under Assumption 1, 2, 3, for some constant Cxr,
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dependent on d, o, taking B 1= % > , the following results hold
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Assumptions:

Assumption 1 (Assumptions on data). We assume that for *; # x; ~ ux,
the following holds with probability 1,

HmzHZ — 17 ‘y(mz)‘ < 17 <$z’7mj> < Omax <1 ,\V/i,j = [n] '

Assumption 2 (Assumption on 1nitialization). The initial distribution Ty, 1
2 2
||w||2—|—||9||2) Vs € [07 1].

is standard Gaussian: (1o, V) (w, 0, s) o< exp ( 5

Assumption 3 (Assumptions on activation o, h). Let 0 := (u,w,b) € RFv,
where u, w € Rk'/,b e R ie k, =2d+ 1, w := (a,w,b) € RE~ where
w R a.beR, ie k. =d+ 2. Forany z € R, we assume

h(z,w) = aoy(w' z+b),

0(z,0) =uoy(w'z+b), oo : R — R.

In addition, we have the following assumption on ocg. |og(z)] <
C1max(|z|, 1), |o((x)| < Cq,|og(x)| < C, and let p;(og) be the i-th Her-

mite coefficient of 0.

Generalization:

Theorem 6 (Generalization). Assume 7, € C(P?;[0,1]) and v, € P? be the
ground truth distributions, such that, y(x) = Ey~r h(Z,, (x,1),w). Un-
der the Assumption 1, 2 and 3, we set B > Q(+y/n). For any 6 > 0, with
probability at least 1 — o, the following bound holds.:

<1:a:rv,uxg()—l(fT*,V* (w)a y(w)) SJ 1/\/ﬁ + 6\/10g(2/5)/2n,

where < hides the constant dependence on d, c.
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