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Overview
Question:
• Can we build a generalization analysis of trained Deep ResNets in the

mean-field setting?
Contributions:
• The paper provides the first minimum eigenvalue estimation (lower

bound) of the Gram matrix of the gradients for deep ResNet parameter-
ized by the ResNet encoder’s parameters and MLP predictor’s parameters
in the mean-field regime.

• The paper proves that the KL divergence of feature encoder ν and output
layer ν can be bounded by a constant (depending only on network archi-
tecture parameters) during the training, which facilitates our generalization
analysis.

• This paper builds the connection between the Rademacher complexity re-
sult and KL divergence, and then derive the convergence rate O(1/

√
n)

for generalization.

Problem Setting
Basic Settings:
• The training set Dn = {(xi, yi)}ni=1 is drawn from an unknown distribution
µ on X × Y , and µX is the marginal distribution of µ over X .

• We consider a binary classification task, denoted by minimizing the ex-
pected risk, let ℓ0−1(f, y) := 1{yf < 0}.

• We employ the squared loss in ERM in training, i.e, ℓ(f, y) := 1
2 (y − f)2.

• The hypothesis f is parameterized by ResNet feature encoder and
a non-linear predictor, fτ,ν . The empirical loss L̂(τ, ν) :=
Ex∼Dn

ℓ(fτ,ν(x), y(x)).
Network Structure: (α, β will be determined later)
• The following ODE models the infinite death infinite width ResNet.

dz(x, s)

ds
= α ·

∫
Rkν

σ(z(x, s),θ)dν(θ, s), s ∈ [0, 1], z(x, 0) = x . (1)

We denote the solution of Equation (1) as Zν(x, s).
• The whole network can be written as

fτ,ν(x) := β ·
∫
Rkτ

h(Zν(x, 1),ω)dτ(ω) ,

Assumptions:

Assumption 1 (Assumptions on data). We assume that for xi ̸= xj ∼ µX ,
the following holds with probability 1,

∥xi∥2 = 1, |y(xi)| ≤ 1, ⟨xi,xj⟩ ≤ Cmax < 1 ,∀i, j ∈ [n] .

Assumption 2 (Assumption on initialization). The initial distribution τ0, ν0

is standard Gaussian: (τ0, ν0)(ω,θ, s) ∝ exp
(
−∥ω∥2

2+∥θ∥2
2

2

)
,∀s ∈ [0, 1].

Assumption 3 (Assumptions on activation σ, h). Let θ := (u,w, b) ∈ Rkν ,
where u,w ∈ Rkν , b ∈ R, i.e. kν = 2d + 1; ω := (a,w, b) ∈ Rkτ , where
w ∈ Rkν , a, b ∈ R, i.e. kτ = d+ 2. For any z ∈ Rkν , we assume

σ(z,θ) = uσ0(w
⊤z + b), h(z,ω) = aσ0(w

⊤z + b), σ0 : R → R.

In addition, we have the following assumption on σ0. |σ0(x)| ≤
C1 max(|x|, 1), |σ′

0(x)| ≤ C1, |σ′′
0 (x)| ≤ C1, and let µi(σ0) be the i-th Her-

mite coefficient of σ0.

Gradient Evolution
• The evolution of the ResNet layers ν(θ, s) can be characterized as

∂ν

∂t
(θ, s, t) = ∇θ ·

(
ν(θ, s, t)∇θ

δL̂(τ, ν)

δν
(θ, s, t)

)
, t ≥ 0, (2)

• The evolution of the final layer distribution τ(ω) can be characterized as

∂τ

∂t
(ω, t) = ∇ω ·

(
τ(ω, t)∇ω

δL̂(τ, ν)

δτ
(ω, t)

)
, t ≥ 0 , (3)

where the functional derivative

δL̂(τ, ν)

δτ
(ω) = Ex∼Dn

[β · (fτ,ν(x)− y(x)) · h(Zν(x, 1),ω)] .

• We define one Gram matrix for the ResNet layers, G1(τ, ν) by G1(τ, ν) =∫ 1

0
G1(τ, ν, s)ds, G1(τ, ν, s) = Eθ∼ν(·,s)J1(τ, ν,θ, s)J1(τ, ν,θ, s)

⊤ .
• We define the Gram matrix for the MLP parameter distribution τ , G2(τ, ν)

by G2(τ, ν) = Eω∼τ(·)J2(ν,ω)J2(ν,ω)⊤, where the row vector of J2 is
defined as

(J2(ν,ω))i,· = ∇ωh(Zν(xi, 1),ω), 1 ≤ i ≤ n .

• The Gram matrix for the whole network is G = α2G1 +G2.

Main Results
KL divergence:

Lemma 4. Under Assumption 1, 2, 3, there exist a constant Λ := Λ(d), only
depending on the dimension d, such that λmin[G(τ0, ν0)] is lower bounded by

λ0 := λmin(G(τ0, ν0)) ≥ λmin(G2(τ0, ν0)) ≥ Λ(d) .

Theorem 5. Assume the PDE (3) has solution τt ∈ P2, and the PDE (2) has
solution νt ∈ C(P2; [0, 1]). Under Assumption 1, 2, 3, for some constant CKL

dependent on d, α, taking β̄ := β
n >

4
√

CKL(d,α)

Λrmax
, the following results hold

for all t ∈ [0,∞):

KL(τt∥τ0) ≤
CKL(d, α)

Λ2β̄2
, KL(νt∥ν0) ≤

CKL(d, α)

Λ2β̄2
.

where the radius rmax is defined such that if ν ∈ C(P2; [0, 1]), τ ∈ P2,
max{W2(ν, ν0),W2(τ, τ0)} ≤ rmax, we have λmin(G2(τ, ν)) ≥ λ0

2 .

Generalization:

Theorem 6 (Generalization). Assume τy ∈ C(P2; [0, 1]) and νy ∈ P2 be the
ground truth distributions, such that, y(x) = Eω∼τyh(Zνy

(x, 1),ω). Un-
der the Assumption 1, 2 and 3, we set β > Ω(

√
n). For any δ > 0, with

probability at least 1− δ, the following bound holds:

Ex∼µX
ℓ0−1(fτ⋆,ν⋆(x), y(x)) ≲ 1/

√
n+ 6

√
log(2/δ)/2n,

where ≲ hides the constant dependence on d, α.
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