Order-Preserving GFlowNets

Yihang $Chen¹$ Lukas Mauch² ¹EPFL ²Sony Europe B.V.

Overview

Generative Flow Networks: GFlowNets have been introduced to sample a diverse set of candidates with probabilities proportional to a given reward. Weakness of Previous GFlowNets:

- GFlowNets require a scalar reward $R(x)$, and cannot be directly applied to the multi-objective optimization $\vec{u}(x)$.
- GFlowNets typically operate on the exponentially scaled reward $R(x) =$ $(u(x))^{\beta}$ to prioritize high scalar $u(x)$ values. However, the optimal β balancing the exploration-exploitation is generally unknown.
- The exact computation of $u(x)$ might be costly, but the comparison of the ordering of $u(x)$ and $u(x')$ may be more efficient.

- We propose the OP-GFNs for both the single-objective maximization and multi-objective Pareto approximation, which require only the (partial-)ordering relations among candidates.
- We empirically evaluate our method on synthesis environment HyperGrid, and two real-world applications: NATS-Bench, and molecular designs to demonstrate its advantages in the diversity and the top reward (or the closeness to the Pareto front) of the generated candidates.
- We show that the learned order-preserving reward will balance the exploration in the early stages and the exploitation in the later stages of the training, by gradually sparsifying the reward function during the training.

Contributions:

Related Works:

- Bengio, Yoshua, et al. "Gflownet foundations." Journal of Machine Learning Research 24.210 (2023): 1-55.
- Jain, Moksh, et al. "Multi-objective gflownets." International conference on machine learning. PMLR, 2023.

Experiments

- We want to learn an order-preserving reward R /
-- $(x') \leftrightarrow \vec{u}(x) \preceq \vec{u}(x').$
- We also want R ι (x) to be almost uniform in the early training stages, and to concentrate on non-dominated candidates in the later training stages.
- We use relative rather explicit boundary conditions on the terminal states to train GFNs.

Definition: We want to maximize a set of D objectives over $\mathcal{X}, \vec{u}(x) \in \mathbb{R}^D$. • Consider the terminal state set $X \subset \mathcal{X}$. The labeling distribution \mathbb{P}_y , indicator function of the Pareto front of X.

Method

We define the the *Pareto dominance* on vectors \vec{u}, u \overline{u} $\vec{u'} \Leftrightarrow \forall k, u_k \leq u'_k$ χ'_k . We remark that \preceq induces a total order on $\mathcal X$ for $D=1$, and a partial order for $D > 1$. Notations:

- A directed acyclic graph $G = (S, A)$ with state space S and action space A. Let $s_0 \in S$ be the *initial state*, the only state with no incoming edges; • The reward R and *terminal states* set X be the states with no outgoing edges.
- A sequence of transitions $\tau = (s_0 \to s_1 \to \cdots \to s_n)$ going from the initial state s_0 to a terminal state $s_n = x$.
- A *trajectory flow* is a nonnegative function $F : \mathcal{T} \to \mathbb{R}_{\geq 0}$.
- For any state s, define the state flow $F(s) = \sum$ $s \in \tau$ $F(\tau)$, and, for any edge • Minimizing the KL divergence $s \rightarrow s'$, the edge flow $F(s \rightarrow s') = \sum$ $\tau = (\cdots \rightarrow s \rightarrow s' \rightarrow \dots) F(\tau).$
- The forward transition P_F and backward transition probability are defined as $P_F(s'|s) := F(s \to s')/F(s), P_B(s|s') = F(s \to s')/F(s')$ for the consecutive state s, s' .
- To approximate a Markovian flow F on the graph G such that $F(x) =$ $R(x)$ $\forall x \in \mathcal{X}$.

 $) := \mathrm{KL}(\mathbb{P}_y(\cdot|X) \| \mathbb{P}(\cdot|X, \widehat{R}))$ \mathbf{r})).

• For the trajectory balance objective, let the trajectory $\tau \to x$, we define the

The NAS can be regarded as a sequence generation problem to generate x , where the reward of each sequence of operations is determined by the accuracy of the corresponding architecture. We follow NATS-Bench, to use the 12-th epoch accuracy in the training and the 200-th epoch accuracy in the evaluation.

We study molecular design environments, including Bag, TFBind8, TF-Bind10, QM9, sEH. We consider GFN baselines including TB, DB, subTB, MaxEnt, and GTB. For reward-maximization methods, we consider Markov Molecular Sampling (MARS), and RL-based methods, including actor-critic, Soft Q-Learning, and proximal policy optimization.

Idea:

and
$$
\widehat{R}(x)
$$
, such that $\widehat{R}(x) \le$

Algorithm:

$$
\mathbb{P}_y(x|X):=
$$

 \overline{a}

$$
\frac{\mathbf{1}[x \in \text{Pareto}(X)]}{|\text{Pareto}(X)|}.
$$

 (\cdot) also induces a conditional distribution on the set X,

We study two-dimensional HyperGrid and consider five objectives. We compare the learned reward function of OP-GFNs and PC(Preference Conditioning)-GFNs. The true Pareto front can be explicitly computed and

$$
\mathbb{P}(x|X,\widehat{R}) := \frac{\widehat{R}(x)}{\sum_{x' \in X} \widehat{R}(x')}, \forall x \in X.
$$

$$
{\mathcal L}_{\mathrm{OP}}(X;\widehat{R}):=
$$

parameterization

$$
\widehat{R}_{\text{TB}}(x;\theta) := Z_{\theta} \prod_{t=1}^{n} P_F(s_t|s_{t-1};\theta) / P_B(s_{t-1}|s_t;\theta).
$$

Theory: For $\{x_i\}_{i=1}^n$ $\sum_{i=0}^n \in \mathcal{X}$, assume that $u(x_i) \leq u(x_j)$, $0 \leq i \leq j \leq$ *n*. When γ is sufficiently large, there exists α_{γ} , β_{γ} , dependent on γ , such that R $\overline{\mathfrak{c}}$ $(x_{i+1}) = \alpha_{\gamma}R$ $\overline{\mathfrak{c}}$ $f(x_i)$ if $u(x_{i+1}) > u(x_i)$, and R $\overline{\mathfrak{c}}$ $(x_{i+1}) = \beta_{\gamma}R$ \mathbf{r} (x_i) if $u(x_{i+1}) = u(x_i)$, for $0 \le i \le n-1$. Also, minimize the $\mathcal{L}_{\text{OP-N}}$ qith a variable γ will drive $\gamma \to \infty$, $\alpha_{\gamma} \to \infty$, $\beta_{\gamma} \to 1$.

Nerual Architecture Search:

Molecular Generation

EPFL SONY # 1GLR

 $\vec{u'} \in \mathbb{R}^D$, such that $\vec{u} \preceq$

Multi-Objective HyperGrid

plotted in the first row.

More experiments can be found in the paper.

