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Overview
Generative Flow Networks: GFlowNets have been introduced to sample a
diverse set of candidates with probabilities proportional to a given reward.
Weakness of Previous GFlowNets:
• GFlowNets require a scalar reward R(x), and cannot be directly applied to

the multi-objective optimization u⃗(x).
• GFlowNets typically operate on the exponentially scaled reward R(x) =
(u(x))β to prioritize high scalar u(x) values. However, the optimal β bal-
ancing the exploration-exploitation is generally unknown.

• The exact computation of u(x) might be costly, but the comparison of the
ordering of u(x) and u(x′) may be more efficient.

Contributions:
• We propose the OP-GFNs for both the single-objective maximization and

multi-objective Pareto approximation, which require only the (partial-
)ordering relations among candidates.

• We empirically evaluate our method on synthesis environment HyperGrid,
and two real-world applications: NATS-Bench, and molecular designs to
demonstrate its advantages in the diversity and the top reward (or the close-
ness to the Pareto front) of the generated candidates.

• We show that the learned order-preserving reward will balance the explo-
ration in the early stages and the exploitation in the later stages of the train-
ing, by gradually sparsifying the reward function during the training.

Related Works:
• Bengio, Yoshua, et al. "Gflownet foundations." Journal of Machine Learn-

ing Research 24.210 (2023): 1-55.
• Jain, Moksh, et al. "Multi-objective gflownets." International conference

on machine learning. PMLR, 2023.

Method

Definition: We want to maximize a set of D objectives over X , u⃗(x) ∈ RD.
We define the the Pareto dominance on vectors u⃗, u⃗′ ∈ RD, such that u⃗ ⪯
u⃗′ ⇔ ∀k, uk ≤ u′

k. We remark that ⪯ induces a total order on X for D = 1,
and a partial order for D > 1. Notations:
• A directed acyclic graph G = (S,A) with state space S and action space
A. Let s0 ∈ S be the initial state, the only state with no incoming edges;
and terminal states set X be the states with no outgoing edges.

• A sequence of transitions τ = (s0 → s1 → · · · → sn) going from the
initial state s0 to a terminal state sn = x.

• A trajectory flow is a nonnegative function F : T → R≥0.
• For any state s, define the state flow F (s) =

∑
s∈τ F (τ), and, for any edge

s → s′, the edge flow F (s → s′) =
∑

τ=(···→s→s′→... ) F (τ).
• The forward transition PF and backward transition probability are defined

as PF (s
′|s) := F (s → s′)/F (s), PB(s|s′) = F (s → s′)/F (s′) for the

consecutive state s, s′.
• To approximate a Markovian flow F on the graph G such that F (x) =
R(x) ∀x ∈ X ..

Idea:
• We want to learn an order-preserving reward R̂(x), such that R̂(x) ≤
R̂(x′) ↔ u⃗(x) ⪯ u⃗(x′).

• We also want R̂(x) to be almost uniform in the early training stages, and to
concentrate on non-dominated candidates in the later training stages.

• We use relative rather explicit boundary conditions on the terminal states to
train GFNs.

Algorithm:
• Consider the terminal state set X ⊂ X . The labeling distribution Py , indi-

cator function of the Pareto front of X .

Py(x|X) :=
1[x ∈ Pareto(X)]

|Pareto(X)|
.

• The reward R̂(·) also induces a conditional distribution on the set X ,

P(x|X, R̂) :=
R̂(x)∑

x′∈X R̂(x′)
,∀x ∈ X.

• Minimizing the KL divergence

LOP(X; R̂) := KL(Py(·|X)∥P(·|X, R̂)).

• For the trajectory balance objective, let the trajectory τ → x, we define the
parameterization

R̂TB(x; θ) := Zθ

n∏
t=1

PF (st|st−1; θ)/PB(st−1|st; θ).

Theory: For {xi}ni=0 ∈ X , assume that u(xi) ≤ u(xj), 0 ≤ i < j ≤
n. When γ is sufficiently large, there exists αγ , βγ , dependent on γ, such
that R̂(xi+1) = αγR̂(xi) if u(xi+1) > u(xi), and R̂(xi+1) = βγR̂(xi) if
u(xi+1) = u(xi), for 0 ≤ i ≤ n − 1. Also, minimize the LOP−N qith a
variable γ will drive γ → ∞, αγ → ∞, βγ → 1.

Experiments
Nerual Architecture Search:
The NAS can be regarded as a sequence generation problem to generate x,
where the reward of each sequence of operations is determined by the accu-
racy of the corresponding architecture. We follow NATS-Bench, to use the
12-th epoch accuracy in the training and the 200-th epoch accuracy in the
evaluation.
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Molecular Generation
We study molecular design environments, including Bag, TFBind8, TF-
Bind10, QM9, sEH. We consider GFN baselines including TB, DB, subTB,
MaxEnt, and GTB. For reward-maximization methods, we consider Markov
Molecular Sampling (MARS), and RL-based methods, including actor-critic,
Soft Q-Learning, and proximal policy optimization.
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Multi-Objective HyperGrid
We study two-dimensional HyperGrid and consider five objectives. We
compare the learned reward function of OP-GFNs and PC(Preference
Conditioning)-GFNs. The true Pareto front can be explicitly computed and
plotted in the first row.
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More experiments can be found in the paper.


