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OverView

Question:
▶ Can we build a generalization analysis of trained Deep ResNets in the mean-field setting?

Contributions:
▶ The first minimum eigenvalue estimation (lower bound) of the Gram matrix of the gradients for deep

ResNet parameterized by the ResNet encoder’s parameters and MLP predictor’s parameters in the
mean-field regime.

▶ The paper proves that the KL divergence of feature encoder ν and output layer ν can be bounded by a
constant (depending only on network architecture parameters) during the training, which facilitates our
generalization analysis.

▶ This paper builds the connection between the Rademacher complexity result and KL divergence, and then
derive the convergence rate O(1/

√
n) for generalization.
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Problem Settings

Basic Settings:
▶ The training set Dn = {(xi, yi)}n

i=1 is drawn from an unknown distribution µ on X × Y, and µX is the
marginal distribution of µ over X .

▶ We consider a binary classification task, denoted by minimizing the expected risk, let
ℓ0−1(f, y) := 1{yf < 0}.

▶ We employ the squared loss in ERM in training, i.e, ℓ(f, y) := 1
2 (y − f)2.

▶ The hypothesis f is parameterized by the ResNet feature encoder and a non-linear predictor, fτ,ν . The
empirical loss L̂(τ, ν) := Ex∼Dn ℓ(fτ,ν(x), y(x)).
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Problem Settings
Network Structure: (α, β will be determined later)
▶ Discrete

zl+1(x) = zl(x) +
α

ML

M∑
m=1

σ(zl(x), θl,m) ∈ Rd, l ∈ [L − 1] ,

fΩK ,ΘL,M
(x) =

β

K

K∑
k=1

h(zL, ωk) ∈ R ,

(1)

▶ The following ODE models the infinite death infinite width ResNet.

dz(x, s)
ds

= α ·
∫
Rkν

σ(z(x, s), θ)dν(θ, s), s ∈ [0, 1], z(x, 0) = x . (2)

We denote the solution of Equation (2) as Zν(x, s).
▶ The whole network can be written as

fτ,ν(x) := β ·
∫
Rkτ

h(Zν(x, 1), ω)dτ(ω) ,
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Assumptions

Assumption (Assumptions on data)
We assume that for xi , xj ∼ µX , the following holds with probability 1,

∥xi∥2 = 1, |y(xi)| ≤ 1, ⟨xi, xj⟩ ≤ Cmax < 1 , ∀i, j ∈ [n] .

Assumption (Assumption on initialization)
The initial distribution τ0, ν0 is standard Gaussian: (τ0, ν0)(ω, θ, s) ∝ exp

(
− ∥ω∥2

2+∥θ∥2
2

2

)
, ∀s ∈ [0, 1].

Assumption (Assumptions on activation σ, h)
Let θ := (u, w, b) ∈ Rkν , where u, w ∈ Rkν , b ∈ R, i.e. kν = 2d + 1; ω := (a, w, b) ∈ Rkτ , where
w ∈ Rkν , a, b ∈ R, i.e. kτ = d + 2. For any z ∈ Rkν , we assume

σ(z, θ) = uσ0(w⊤z + b), h(z, ω) = aσ0(w⊤z + b), σ0 : R→ R.

In addition, we have the following assumption on σ0. |σ0(x)| ≤ C1 max(|x|, 1), |σ′
0(x)| ≤ C1, |σ′′

0 (x)| ≤ C1,
and let µi(σ0) be the i-th Hermite coefficient of σ0.
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Gradient Evolution

▶ The evolution of the ResNet layers ν(θ, s) can be characterized as

∂ν

∂t
(θ, s, t) = ∇θ ·

(
ν(θ, s, t)∇θ

δL̂(τ, ν)
δν

(θ, s, t)
)

, t ≥ 0, (3)

▶ The evolution of the final layer distribution τ(ω) can be characterized as

∂τ

∂t
(ω, t) = ∇ω ·

(
τ(ω, t)∇ω

δL̂(τ, ν)
δτ

(ω, t)
)

, t ≥ 0 , (4)

where the functional derivative

δL̂(τ, ν)
δτ

(ω) = Ex∼Dn [β · (fτ,ν(x) − y(x)) · h(Zν(x, 1), ω)] .
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Gram Matrix

▶ We define one Gram matrix for the ResNet layers, G1(τ, ν) by

G1(τ, ν) =
∫ 1

0
G1(τ, ν, s)ds

G1(τ, ν, s) = Eθ∼ν(·,s)J1(τ, ν, θ, s)J1(τ, ν, θ, s)⊤ .

.
▶ We define the Gram matrix for the MLP parameter distribution τ , G2(τ, ν) by

G2(τ, ν) = Eω∼τ(·)J2(ν, ω)J2(ν, ω)⊤, where the row vector of J2 is defined as

(J2(ν, ω))i,· = ∇ωh(Zν(xi, 1), ω), 1 ≤ i ≤ n .

▶ The Gram matrix for the whole network is G = α2G1 + G2.
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Minimum Eigenvalue

Lemma
There exist a constant Λ := Λ(d), only depending on the dimension d, such that λmin[G(τ0, ν0)] is lower
bounded by

λ0 := λmin(G(τ0, ν0)) ≥ λmin(G2(τ0, ν0)) ≥ Λ(d) .

Theorem
Assume the PDE Eqn. 4 has solution τt ∈ P2, and the PDE Eqn. 3 has solution νt ∈ C(P2; [0, 1]). Under

Assumption 1, 2, 3, for some constant CKL dependent on d, α, taking β̄ := β
n

>
4

√
CKL(d,α)
Λrmax

, the following
results hold for all t ∈ [0, ∞):

L̂(τt, νt) ≤ e− β2Λ
2n

tL̂(τ0, ν0), KL(τt∥τ0) ≤
CKL(d, α)

Λ2β̄2
, KL(νt∥ν0) ≤

CKL(d, α)
Λ2β̄2

.

where the radius rmax is defined such that if ν ∈ C(P2; [0, 1]), τ ∈ P2, max{W2(ν, ν0), W2(τ, τ0)} ≤ rmax, we
have λmin(G2(τ, ν)) ≥ λ0

2 .
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Generalization

Theorem (Generalization)
Assume τy ∈ C(P2; [0, 1]) and νy ∈ P2 be the ground truth distributions, such that,
y(x) = Eω∼τy h(Zνy (x, 1), ω). Under the Assumption 1, 2 and 3, we set β > Ω(

√
n). For any δ > 0, with

probability at least 1 − δ, the following bound holds:

Ex∼µX ℓ0−1(fτ⋆,ν⋆ (x), y(x)) ≲ 1/
√

n + 6
√

log(2/δ)/2n,

where ≲ hides the constant dependence on d, α.
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