Generalization of Scaled Deep ResNets in the Mean-Field Regime

Yihang Chen ¹ Fanghui Liu² Yiping Lu³ Grigorios G Chrysos ⁴ Volkan Cevher ¹

¹ LIONS, EPFL ²University of Warwick

³New York University ⁴University of Wisconsin-Madison

Published as a conference paper at ICLR 2024 (Spotlight).

OverView

Question:

Can we build a generalization analysis of trained Deep ResNets in the mean-field setting?

Contributions:

- The first minimum eigenvalue estimation (lower bound) of the Gram matrix of the gradients for deep ResNet parameterized by the ResNet encoder's parameters and MLP predictor's parameters in the mean-field regime.
- The paper proves that the KL divergence of feature encoder ν and output layer ν can be bounded by a constant (depending only on network architecture parameters) during the training, which facilitates our generalization analysis.
- This paper builds the connection between the Rademacher complexity result and KL divergence, and then derive the convergence rate $O(1/\sqrt{n})$ for generalization.

Problem Settings

Basic Settings:

- The training set $\mathcal{D}_n = \{(x_i, y_i)\}_{i=1}^n$ is drawn from an unknown distribution μ on $\mathcal{X} \times \mathcal{Y}$, and μ_X is the marginal distribution of μ over \mathcal{X} .
- We consider a binary classification task, denoted by minimizing the expected risk, let $\ell_{0-1}(f, y) := \mathbb{1}\{yf < 0\}.$
- We employ the squared loss in ERM in training, i.e, $\ell(f, y) := \frac{1}{2}(y f)^2$.
- ► The hypothesis f is parameterized by the ResNet feature encoder and a non-linear predictor, $f_{\tau,\nu}$. The empirical loss $\widehat{L}(\tau,\nu) := \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}_n} \ \ell(f_{\tau,\nu}(\boldsymbol{x}), y(\boldsymbol{x})).$

Problem Settings

Network Structure: (α, β will be determined later)

Discrete

lions@epfl

$$\boldsymbol{z}_{l+1}(\boldsymbol{x}) = \boldsymbol{z}_l(\boldsymbol{x}) + \frac{\alpha}{ML} \sum_{m=1}^M \boldsymbol{\sigma}(\boldsymbol{z}_l(\boldsymbol{x}), \boldsymbol{\theta}_{l,m}) \in \mathbb{R}^d, \quad l \in [L-1],$$

$$\hat{\boldsymbol{\alpha}}_{K,\boldsymbol{\Theta}_{L,M}}(\boldsymbol{x}) = \frac{\beta}{K} \sum_{k=1}^K h(\boldsymbol{z}_L, \boldsymbol{\omega}_k) \in \mathbb{R},$$
(1)

The following ODE models the infinite death infinite width ResNet.

$$\frac{\mathrm{d}\boldsymbol{z}(\boldsymbol{x},s)}{\mathrm{d}s} = \alpha \cdot \int_{\mathbb{R}^{k_{\nu}}} \boldsymbol{\sigma}(\boldsymbol{z}(\boldsymbol{x},s),\boldsymbol{\theta}) \mathrm{d}\nu(\boldsymbol{\theta},s), \ s \in [0,1], \ \boldsymbol{z}(\boldsymbol{x},0) = \boldsymbol{x}.$$
(2)

We denote the solution of Equation (2) as $\pmb{Z}_{
u}(\pmb{x},s).$

The whole network can be written as

$$f_{ au,
u}(oldsymbol{x}) := eta \cdot \int_{\mathbb{R}^{k_{ au}}} h(oldsymbol{Z}_{
u}(oldsymbol{x},1),oldsymbol{\omega}) \mathrm{d} au(oldsymbol{\omega})\,,$$

Assumptions

Assumption (Assumptions on data)

We assume that for $x_i
eq x_j \sim \mu_X$, the following holds with probability 1,

$$\|x_i\|_2 = 1, |y(x_i)| \le 1, \langle x_i, x_j \rangle \le C_{\max} < 1, \forall i, j \in [n].$$

Assumption (Assumption on initialization)

 $\text{ The initial distribution } \tau_0, \nu_0 \text{ is standard Gaussian: } (\tau_0, \nu_0)(\boldsymbol{\omega}, \boldsymbol{\theta}, s) \propto \exp\left(-\frac{\|\boldsymbol{\omega}\|_2^2 + \|\boldsymbol{\theta}\|_2^2}{2}\right), \forall s \in [0, 1].$

Assumption (Assumptions on activation σ , h)

Let $\boldsymbol{\theta} := (\boldsymbol{u}, \boldsymbol{w}, b) \in \mathbb{R}^{k_{\nu}}$, where $\boldsymbol{u}, \boldsymbol{w} \in \mathbb{R}^{k_{\nu}}, b \in \mathbb{R}$, i.e. $k_{\nu} = 2d + 1$; $\boldsymbol{\omega} := (a, \boldsymbol{w}, b) \in \mathbb{R}^{k_{\tau}}$, where $\boldsymbol{w} \in \mathbb{R}^{k_{\nu}}, a, b \in \mathbb{R}$, i.e. $k_{\tau} = d + 2$. For any $\boldsymbol{z} \in \mathbb{R}^{k_{\nu}}$, we assume

$$\boldsymbol{\sigma}(\boldsymbol{z},\boldsymbol{\theta}) = \boldsymbol{u}\sigma_0(\boldsymbol{w}^\top\boldsymbol{z} + b), \quad h(\boldsymbol{z},\boldsymbol{\omega}) = a\sigma_0(\boldsymbol{w}^\top\boldsymbol{z} + b), \quad \sigma_0: \mathbb{R} \to \mathbb{R}.$$

In addition, we have the following assumption on σ_0 . $|\sigma_0(x)| \le C_1 \max(|x|, 1), |\sigma'_0(x)| \le C_1, |\sigma''_0(x)| \le C_1$, and let $\mu_i(\sigma_0)$ be the *i*-th Hermite coefficient of σ_0 .

lions@epfl

Gradient Evolution

▶ The evolution of the ResNet layers $\nu(\theta, s)$ can be characterized as

$$\frac{\partial\nu}{\partial t}(\boldsymbol{\theta}, s, t) = \nabla_{\boldsymbol{\theta}} \cdot \left(\nu(\boldsymbol{\theta}, s, t) \nabla_{\boldsymbol{\theta}} \frac{\delta \widehat{L}(\tau, \nu)}{\delta \nu}(\boldsymbol{\theta}, s, t)\right), \quad t \ge 0,$$
(3)

 \blacktriangleright The evolution of the final layer distribution $au(\omega)$ can be characterized as

$$\frac{\partial \tau}{\partial t}(\boldsymbol{\omega},t) = \nabla_{\boldsymbol{\omega}} \cdot \left(\tau(\boldsymbol{\omega},t)\nabla_{\boldsymbol{\omega}} \frac{\delta \widehat{L}(\tau,\nu)}{\delta \tau}(\boldsymbol{\omega},t)\right), \quad t \ge 0,$$
(4)

where the functional derivative

$$\frac{\delta \widehat{L}(\tau,\nu)}{\delta \tau}(\boldsymbol{\omega}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_n} \left[\beta \cdot (f_{\tau,\nu}(\boldsymbol{x}) - y(\boldsymbol{x})) \cdot h(\boldsymbol{Z}_{\nu}(\boldsymbol{x},1),\boldsymbol{\omega}) \right].$$

lions@epfl

Gram Matrix

• We define one Gram matrix for the ResNet layers, $G_1(au,
u)$ by

$$\begin{split} \boldsymbol{G}_1(\tau,\nu) &= \int_0^1 \boldsymbol{G}_1(\tau,\nu,s) \mathrm{d}s \\ \boldsymbol{G}_1(\tau,\nu,s) &= \mathbb{E}_{\boldsymbol{\theta} \sim \nu(\cdot,s)} \boldsymbol{J}_1(\tau,\nu,\boldsymbol{\theta},s) \boldsymbol{J}_1(\tau,\nu,\boldsymbol{\theta},s)^\top \end{split}$$

▶ We define the Gram matrix for the MLP parameter distribution τ , $G_2(\tau, \nu)$ by $G_2(\tau, \nu) = \mathbb{E}_{\omega \sim \tau(\cdot)} J_2(\nu, \omega) J_2(\nu, \omega)^\top$, where the row vector of J_2 is defined as

$$\left(oldsymbol{J}_2(
u,oldsymbol{\omega})
ight)_{i,\cdot} =
abla_{oldsymbol{\omega}} h(oldsymbol{Z}_
u(oldsymbol{x}_i,1),oldsymbol{\omega}), \quad 1 \leq i \leq n \,.$$

• The Gram matrix for the whole network is $G = \alpha^2 G_1 + G_2$.

Minimum Eigenvalue

Lemma

There exist a constant $\Lambda := \Lambda(d)$, only depending on the dimension d, such that $\lambda_{\min}[G(\tau_0, \nu_0)]$ is lower bounded by

$$\lambda_0 := \lambda_{\min}(oldsymbol{G}(au_0,
u_0)) \geq \lambda_{\min}(oldsymbol{G}_2(au_0,
u_0)) \geq \Lambda(d)$$
 .

Theorem

Assume the PDE Eqn. 4 has solution $\tau_t \in \mathcal{P}^2$, and the PDE Eqn. 3 has solution $\nu_t \in \mathcal{C}(\mathcal{P}^2; [0, 1])$. Under Assumption 1, 2, 3, for some constant C_{KL} dependent on d, α , taking $\bar{\beta} := \frac{\beta}{n} > \frac{4\sqrt{C_{\mathrm{KL}}(d,\alpha)}}{\Lambda r_{\max}}$, the following results hold for all $t \in [0, \infty)$:

$$\widehat{L}(\tau_t,\nu_t) \le e^{-\frac{\beta^2 \Lambda}{2n}t} \widehat{L}(\tau_0,\nu_0), \quad \mathrm{KL}(\tau_t \| \tau_0) \le \frac{C_{\mathrm{KL}}(d,\alpha)}{\Lambda^2 \bar{\beta}^2}, \quad \mathrm{KL}(\nu_t \| \nu_0) \le \frac{C_{\mathrm{KL}}(d,\alpha)}{\Lambda^2 \bar{\beta}^2}$$

where the radius r_{\max} is defined such that if $\nu \in C(\mathcal{P}^2; [0, 1]), \tau \in \mathcal{P}^2$, $\max\{\mathcal{W}_2(\nu, \nu_0), \mathcal{W}_2(\tau, \tau_0)\} \leq r_{\max}$, we have $\lambda_{\min}(G_2(\tau, \nu)) \geq \frac{\lambda_0}{2}$.

Generalization

Theorem (Generalization)

Assume $\tau_y \in C(\mathcal{P}^2; [0, 1])$ and $\nu_y \in \mathcal{P}^2$ be the ground truth distributions, such that, $y(x) = \mathbb{E}_{\omega \sim \tau_y} h(\mathbf{Z}_{\nu_y}(x, 1), \omega)$. Under the Assumption 1, 2 and 3, we set $\beta > \Omega(\sqrt{n})$. For any $\delta > 0$, with probability at least $1 - \delta$, the following bound holds:

$$\mathbb{E}_{\boldsymbol{x} \sim \mu_{\boldsymbol{X}}} \ell_{0-1}(f_{\tau_{\star},\nu_{\star}}(\boldsymbol{x}), \boldsymbol{y}(\boldsymbol{x})) \leq 1/\sqrt{n} + 6\sqrt{\log(2/\delta)/2n},$$

where \leq hides the constant dependence on d, α .

